Matching Items (7)
Filtering by

Clear all filters

137262-Thumbnail Image.png
Description
The thesis is an investigation on current regulations of commercial aircraft landing and take-off procedures and an analysis of potential weaknesses within the regulatory system for commercial aerospace. To determine such flaws, an area of worse-case scenarios with regard to the aforementioned flight operations was researched. The events selected to

The thesis is an investigation on current regulations of commercial aircraft landing and take-off procedures and an analysis of potential weaknesses within the regulatory system for commercial aerospace. To determine such flaws, an area of worse-case scenarios with regard to the aforementioned flight operations was researched. The events selected to best-depict these scenarios where incidents of aircraft overrunning the runway, referred to as runway excursions. A case-study conducted of 44 federal investigations of runway excursions produced data indicating four influential factors within these incidents: weather, pilot error, instrument malfunction, and runway condition. Upon examination, all but pilot error appeared to have federal enforcement to diminish the occurrence of future incidents. This is a direct result of the broad possibilities that make up this factor. The study then searched for a consistent fault within the incidents with the results indicating an indirect relationship of thrust reversers, a technique utilized by pilots to provide additional braking, to these excursions. In cases of thrust reverser failure, pilots' over-reliance on the system lead to time being lost from the confusion produced by the malfunction, ultimately resulting in several different runway excursions. The legal implication with the situation is that current regulations are ambiguous on the subject of thrust reversers and thus do not properly model the usage of the technique. Thus, to observe the scope of danger this ambiguity presents to the industry, the relationship of the technique to commercial aerospace needed to be determined. Interviews were set-up with former commercial pilots to gather data related to the flight crew perspective. This data indicated that thrust reversers were actively utilized by pilots within the industry for landing operations. The problem with the current regulations was revealed that the lack of details on thrust reverser reflected a failure of regulations to model current industry flight operations. To improve safety within the industry, new data related to thrust reverser deployment must be developed and enforced to determine appropriate windows to utilize the technique, thus decreasing time lost in confusion that results from thrust reversers malfunction. Future work would be based on producing simulations to determine said data as well as proposing the policy suggestions produced by this thesis.
ContributorsCreighton, Andrew John (Author) / Takahashi, Timothy (Thesis director) / Marchant, Gary (Committee member) / Kimberly, Jimmy (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Politics and Global Studies (Contributor)
Created2014-05
137142-Thumbnail Image.png
Description
This work describes the numerical process developed for use of rocket engine nozzle ejectors. Ejector nozzles, while applied to jet engines extensively, have not been applied to rockets, and have great potential to improve the performance of endoatmospheric rocket propulsion systems. Utilizing the low pressure, high velocity flow in the

This work describes the numerical process developed for use of rocket engine nozzle ejectors. Ejector nozzles, while applied to jet engines extensively, have not been applied to rockets, and have great potential to improve the performance of endoatmospheric rocket propulsion systems. Utilizing the low pressure, high velocity flow in the plume, this secondary structure entrains a secondary mass flow to increase the mass flow of the propulsion system. Rocket engine nozzle ejectors must be designed with the high supersonic conditions associated with rocket engines. These designs rely on the numerical process described in this paper.
ContributorsGibson, Gaines Sullivan (Author) / Wells, Valana (Thesis director) / Takahashi, Timothy (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
134673-Thumbnail Image.png
Description
This paper describes an aircraft design optimization tool for wave drag reduction. The tool synthesizes an aircraft wing and fuselage geometry using the Rhinoceros CAD program. It then implements an algorithm to perform area-ruling on the fuselage. The algorithm adjusts the cross-sectional area along the length of the fuselage, with

This paper describes an aircraft design optimization tool for wave drag reduction. The tool synthesizes an aircraft wing and fuselage geometry using the Rhinoceros CAD program. It then implements an algorithm to perform area-ruling on the fuselage. The algorithm adjusts the cross-sectional area along the length of the fuselage, with the wing geometry fixed, to match a Sears-Haack distribution. Following the optimization of the area, the tool collects geometric data for analysis using legacy performance tools. This analysis revealed that performing the optimization yielded an average reduction in wave drag of 25% across a variety of Mach numbers on two different starting geometries. The goal of this project is to integrate this optimization tool into a larger trade study tool as it will allow for higher fidelity modeling as well as large improvements in transonic and supersonic drag performance.
ContributorsLeader, Robert William (Author) / Takahashi, Timothy (Thesis director) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133327-Thumbnail Image.png
Description
This paper outlines the development of a script which utilizes a series of user-defined input parameters to construct base-level CAD models of aircraft landing gear. With an increased focus on computation development of aircraft models to allow for a rapidprototyping design process, this program seeks to allow designers to check

This paper outlines the development of a script which utilizes a series of user-defined input parameters to construct base-level CAD models of aircraft landing gear. With an increased focus on computation development of aircraft models to allow for a rapidprototyping design process, this program seeks to allow designers to check for the validity of design integration before moving forward on systems testing. With this script, users are able to visually analyze the landing gear configurations on an aircraft in both the gear up and gear down configuration. The primary purpose this serves is to determine the validity of the gear's potential to fit within the limited real estate on an aircraft body. This, theoretically, can save time by weeding out infeasible designs before moving forward with subsystem performance testing. The script, developed in Python, constructs CAD models of dual and dual-tandem main landing gear configurations in the CAD program Rhino5. With an included design template consisting of 33 parameters, the script allows for a reasonable trade off between conciseness and flexibility of design.
ContributorsPatrick, Noah Edward (Author) / Takahashi, Timothy (Thesis director) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131763-Thumbnail Image.png
Description
The goal of this thesis project was to build an understanding of supersonic projectile dynamics through the creation of a trajectory model that incorporates several different aerodynamic concepts and builds a criteria for the stability of a projectile. This was done iteratively where the model was built from a foundation

The goal of this thesis project was to build an understanding of supersonic projectile dynamics through the creation of a trajectory model that incorporates several different aerodynamic concepts and builds a criteria for the stability of a projectile. This was done iteratively where the model was built from a foundation of kinematics with various aerodynamic principles being added incrementally. The primary aerodynamic principle that influenced the trajectory of the projectile was in the coefficient of drag. The drag coefficient was split into three primary components: the form drag, skin friction drag, and base pressure drag. These together made up the core of the model, additional complexity served to increase the accuracy of the model and generalize to different projectile profiles.
ContributorsBlair, Martin (Co-author) / Armenta, Francisco (Co-author) / Takahashi, Timothy (Thesis director) / Herrmann, Marcus (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description

Today, the vision of Commercial Supersonic Travel is often dreamed possible with innovation. Modern tech-business plans to reinvent commercial SuperSonic Transport (SST), while gaining reliable venture capital investment and proactive social backing. However, the concept’s global viability remains questionable, as regulation opposes its integrability. As a result, SST has become

Today, the vision of Commercial Supersonic Travel is often dreamed possible with innovation. Modern tech-business plans to reinvent commercial SuperSonic Transport (SST), while gaining reliable venture capital investment and proactive social backing. However, the concept’s global viability remains questionable, as regulation opposes its integrability. As a result, SST has become industrially forgotten. This research paper challenges the neglect of SST through routing optimizations derived from an industry’s collective research, while outlining decisive use-cases. Initially, this paper describes the difficulty in SST’s integration through its logistical tasks, demanding designs, and lacking efficiency. After that, the paper defines an optimization strategy, through software-analyzed flight paths, for overall supersonic operations. This strategy was proven to shorten established SST flights by 6%, while enabling the implementation of newfound SST paths. Here, optimization averaged 3.3% on density-derived routes and 5.4% on software-derived routes. More importantly, this paper demonstrated routing optimization enables MACH 1.6 aircraft to achieve MACH 2 flight times. Further, this paper attempts to justify SST through an analysis of its market, financials, and social perspectives. With that, the paper justifies an ideal SST customer earns 630$/hr, while such measurements vary amongst flight types. Finally, this paper conceptualizes that SST, with optimization, promises a noteworthy business, while developments in aircraft designs may revamp the aerospace industry completely.

ContributorsDe Roo, Matisse (Author) / Takahashi, Timothy (Thesis director) / Dahm, Werner (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
161080-Thumbnail Image.png
Description

The objective of this thesis is to conduct a case study into the Bell X-2, an early supersonic research aircraft utilizing a modern perspective and computational tools. The Bell X-2 was the second in a series of supersonic research aircraft created by Bell Aviation Corporation, designed to help engineers to

The objective of this thesis is to conduct a case study into the Bell X-2, an early supersonic research aircraft utilizing a modern perspective and computational tools. The Bell X-2 was the second in a series of supersonic research aircraft created by Bell Aviation Corporation, designed to help engineers to explore this new region of flight. The goal of the X-2 was to gather data on high Mach Number and high-altitude flight as well as aerodynamic heating. The X-2 had poor lateral stability resulting in it being unstable at high Mach Numbers and moderate angles of attack. The program was full of new and unforeseen technical challenges resulting in many delays and tragedies. The program ended when stability problems resulted in a fatal crash destroying the aircraft and killing the test pilot. This case study addresses the historical background of the program, human influence, the stability problems encountered and conducting a stability analysis of the aircraft. To conduct the stability analysis, the potential flow solver, VORLAX, was used to gather aerodynamic coefficient data of the X-2 and determine if these stability problems could be determined from the data obtained. By comparing the results from VORLAX to a wind tunnel study, I determined that the poor lateral directional stability and control coupling issues were foreseeable in the initial design.

ContributorsObrien, Kevin (Author) / Takahashi, Timothy (Thesis director) / Nullmeyer, Robert (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2021-12