Matching Items (20)
Filtering by

Clear all filters

136525-Thumbnail Image.png
Description
The purpose of my Honors Thesis was to generate a tool that could be implemented by Aerospace students at Arizona State University. This tool was created using MatLab which is the current program students are using. The modeling system that was generated goes step-by-step through the flow of a two

The purpose of my Honors Thesis was to generate a tool that could be implemented by Aerospace students at Arizona State University. This tool was created using MatLab which is the current program students are using. The modeling system that was generated goes step-by-step through the flow of a two spool gas turbine engine. The code was then compared to an ideal case engine with predictable values. It was found to have less than a 3 percent error for these parameters, which included optimal net work produced, optimal overall pressure ratio, and maximum pressure ratio. The modeling system was then run through a parametric analysis. In the first case, the bypass ratio was set to 0 and the freestream Mach number was set to 0. The second case was with a bypass ratio of 0 and fresstream Mach number of 0.85. The third case was with a bypass ratio of 5 and freestream Mach number of 0. The fourth case was with a bypass ratio of 5 and fresstream Mach number of 0.85. Each of these cases was run at various overall pressure ratios and maximum Temperatures of 1500 K, 1600 K and 1700 K. The results modeled the behavior that was expected. As the freestream Mach number was increased, the thrust decreased and the thrust specific fuel consumption increased, corresponding to an increase in total pressure at the combustor inlet. It was also found that the thrust was increased and the thrust specific fuel consumption decreased as the bypass ratio was increased. These results also make sense as there is less airflow passing through the engine core. Finally the engine was compared to two real engines. Both of which are General Electric G6 series engines. For the 80C2A3 engine, the percent difference between thrust and thrust specific fuel consumption was less than five percent. For the 50B, the thrust was below a two percent difference, but the thrust specific fuel consumption clearly provided inaccurate results. This could be caused by the lack of inputs provided by General Electric. The amount of fuel injected is largely dependent on the maximum temperature which is not available to the public. Overall, the code produces comparable results to real engines and can display how isolating and modifying a certain parameter effects engine performance.
ContributorsCook, Rachel Nicole (Author) / Dahm, Werner (Thesis director) / Lee, Taewoo (Committee member) / Wells, Valana (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
133566-Thumbnail Image.png
Description
Active pixel sensors hold a lot of promise for space applications in star tracking because of their effectiveness against radiation, small size, and on-chip processing. The research focus is on documenting and validating ground test equipment for these types of sensors. Through demonstrating the utility of a commercial sensor, the

Active pixel sensors hold a lot of promise for space applications in star tracking because of their effectiveness against radiation, small size, and on-chip processing. The research focus is on documenting and validating ground test equipment for these types of sensors. Through demonstrating the utility of a commercial sensor, the research will be able to work on ensuring the accuracy of ground tests. This contribution allows for future research on improving active pixel sensor performance.
ContributorsDotson, Breydan Lane (Author) / White, Daniel (Thesis director) / Jansen, Rolf (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137262-Thumbnail Image.png
Description
The thesis is an investigation on current regulations of commercial aircraft landing and take-off procedures and an analysis of potential weaknesses within the regulatory system for commercial aerospace. To determine such flaws, an area of worse-case scenarios with regard to the aforementioned flight operations was researched. The events selected to

The thesis is an investigation on current regulations of commercial aircraft landing and take-off procedures and an analysis of potential weaknesses within the regulatory system for commercial aerospace. To determine such flaws, an area of worse-case scenarios with regard to the aforementioned flight operations was researched. The events selected to best-depict these scenarios where incidents of aircraft overrunning the runway, referred to as runway excursions. A case-study conducted of 44 federal investigations of runway excursions produced data indicating four influential factors within these incidents: weather, pilot error, instrument malfunction, and runway condition. Upon examination, all but pilot error appeared to have federal enforcement to diminish the occurrence of future incidents. This is a direct result of the broad possibilities that make up this factor. The study then searched for a consistent fault within the incidents with the results indicating an indirect relationship of thrust reversers, a technique utilized by pilots to provide additional braking, to these excursions. In cases of thrust reverser failure, pilots' over-reliance on the system lead to time being lost from the confusion produced by the malfunction, ultimately resulting in several different runway excursions. The legal implication with the situation is that current regulations are ambiguous on the subject of thrust reversers and thus do not properly model the usage of the technique. Thus, to observe the scope of danger this ambiguity presents to the industry, the relationship of the technique to commercial aerospace needed to be determined. Interviews were set-up with former commercial pilots to gather data related to the flight crew perspective. This data indicated that thrust reversers were actively utilized by pilots within the industry for landing operations. The problem with the current regulations was revealed that the lack of details on thrust reverser reflected a failure of regulations to model current industry flight operations. To improve safety within the industry, new data related to thrust reverser deployment must be developed and enforced to determine appropriate windows to utilize the technique, thus decreasing time lost in confusion that results from thrust reversers malfunction. Future work would be based on producing simulations to determine said data as well as proposing the policy suggestions produced by this thesis.
ContributorsCreighton, Andrew John (Author) / Takahashi, Timothy (Thesis director) / Marchant, Gary (Committee member) / Kimberly, Jimmy (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Politics and Global Studies (Contributor)
Created2014-05
136994-Thumbnail Image.png
Description
The purpose of this project is to determine the feasibility of a water tunnel designed to meet certain constraints. The project goals are to tailor a design for a given location, and to produce a repeatable design sizing and shape process for specified constraints. The primary design goals include a

The purpose of this project is to determine the feasibility of a water tunnel designed to meet certain constraints. The project goals are to tailor a design for a given location, and to produce a repeatable design sizing and shape process for specified constraints. The primary design goals include a 1 m/s flow velocity in a 30cm x 30cm test section for 300 seconds. Secondary parameters, such as system height, tank height, area contraction ratio, and roof loading limits, may change depending on preference, location, or environment. The final chosen configuration is a gravity fed design with six major components: the reservoir tank, the initial duct, the contraction nozzle, the test section, the exit duct, and the variable control exit nozzle. Important sizing results include a minimum water weight of 60,000 pounds, a system height of 7.65 meters, a system length of 6 meters (not including the reservoir tank), a large shallow reservoir tank width of 12.2 meters, and height of 0.22 meters, and a control nozzle exit radius range of 5.25 cm to 5.3 cm. Computational fluid dynamic simulation further supports adherence to the design constraints but points out some potential areas for improvement in dealing with flow irregularities. These areas include the bends in the ducts, and the contraction nozzle. Despite those areas recommended for improvement, it is reasonable to conclude that the design and process fulfill the project goals.
ContributorsZykan, Brandt Davis Healy (Author) / Wells, Valana (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
137142-Thumbnail Image.png
Description
This work describes the numerical process developed for use of rocket engine nozzle ejectors. Ejector nozzles, while applied to jet engines extensively, have not been applied to rockets, and have great potential to improve the performance of endoatmospheric rocket propulsion systems. Utilizing the low pressure, high velocity flow in the

This work describes the numerical process developed for use of rocket engine nozzle ejectors. Ejector nozzles, while applied to jet engines extensively, have not been applied to rockets, and have great potential to improve the performance of endoatmospheric rocket propulsion systems. Utilizing the low pressure, high velocity flow in the plume, this secondary structure entrains a secondary mass flow to increase the mass flow of the propulsion system. Rocket engine nozzle ejectors must be designed with the high supersonic conditions associated with rocket engines. These designs rely on the numerical process described in this paper.
ContributorsGibson, Gaines Sullivan (Author) / Wells, Valana (Thesis director) / Takahashi, Timothy (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
Description
The aerospace industry has been conducting research on the additive manufacturing (AM) process since the 1980's, but companies have recently just begun to apply AM in hopes that this new technology will meet or exceed the requirements met by previous manufacturing methods, as well as producing more cost effective, geometrically-complex

The aerospace industry has been conducting research on the additive manufacturing (AM) process since the 1980's, but companies have recently just begun to apply AM in hopes that this new technology will meet or exceed the requirements met by previous manufacturing methods, as well as producing more cost effective, geometrically-complex products. This investigation evaluated the performance of 3D-printed aerospace test specimens made by Powder Bed Fusion Technologies, and compared them to forged specimens. A design of experiments varying build parameters was conducted in order to determine AM component porosity. Factors such as powder post-processing, directionality of the build, and fractology of the samples were evaluated through tensile strength testing and hardness testing of Inconel 718 wrought and EBM printed materials. Using electron microsopy, the responses to these factors were analyzed for stress fractures, grain boundaries, and other defects that occurred in the testing process. The comparison determined which metallurgical process provides the most effective material for aircraft usage.
ContributorsNez, Brittany Amber (Author) / Parsey, John (Thesis director) / Hsu, Keng (Committee member) / Godfrey, Donald (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134483-Thumbnail Image.png
Description
Winglets and wingtip structures have been prominent in commercial aircraft design in the past few decades. These designs are known to reduce the induced drag on an aircraft wing, thus increasing its overall fuel efficiency. Several different winglet designs exist, and little reason is offered as to why different winglet

Winglets and wingtip structures have been prominent in commercial aircraft design in the past few decades. These designs are known to reduce the induced drag on an aircraft wing, thus increasing its overall fuel efficiency. Several different winglet designs exist, and little reason is offered as to why different winglet designs are used in practice on different aircraft, especially those of variable range. This research tests existing winglets (no winglet, raked winglet, flat plate winglet, blended winglet, and wingtip fence) on a span-constrained wing planform design both computationally and in the wind tunnel. While computational tests using a vortex lattice code indicate that the wingtip fence minimizes induced drag and maximizes lift to drag ratio in most cases, wind tunnel tests show that at different lift coefficients and angles of attack, the raked winglet and blended winglet optimize the aerodynamic efficiency at incompressible flow velocities. Applying the wing aerodynamic data to existing variable range commercial aircraft, mission performance analysis is run on a Bombardier CRJ200, Airbus A320, and Airbus A340-300. By comparing flight lift coefficients in cruise for these aircraft to the lift coefficients at which winglets minimize drag in compressible flows, optimal winglet designs are chosen. It is found that the short range CRJ200 is best equipped with a flat plate or blended winglet, the medium range A320 can reduce drag with either a wingtip fence, raked winglet, or blended winglet, and the long range A340 performs best with a flat plate, blended, or raked winglet. Overall, despite the discrepancy in winglet selection depending on which experimental results are used, it is clear that addition of a winglet to a span-constrained wing is beneficial in that it reduces induced drag and therefore increases overall fuel efficiency.
ContributorsOremland, Joshua Elan (Author) / Wells, Valana (Thesis director) / Mertz, Benjamin (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134673-Thumbnail Image.png
Description
This paper describes an aircraft design optimization tool for wave drag reduction. The tool synthesizes an aircraft wing and fuselage geometry using the Rhinoceros CAD program. It then implements an algorithm to perform area-ruling on the fuselage. The algorithm adjusts the cross-sectional area along the length of the fuselage, with

This paper describes an aircraft design optimization tool for wave drag reduction. The tool synthesizes an aircraft wing and fuselage geometry using the Rhinoceros CAD program. It then implements an algorithm to perform area-ruling on the fuselage. The algorithm adjusts the cross-sectional area along the length of the fuselage, with the wing geometry fixed, to match a Sears-Haack distribution. Following the optimization of the area, the tool collects geometric data for analysis using legacy performance tools. This analysis revealed that performing the optimization yielded an average reduction in wave drag of 25% across a variety of Mach numbers on two different starting geometries. The goal of this project is to integrate this optimization tool into a larger trade study tool as it will allow for higher fidelity modeling as well as large improvements in transonic and supersonic drag performance.
ContributorsLeader, Robert William (Author) / Takahashi, Timothy (Thesis director) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133543-Thumbnail Image.png
Description
This paper studies the history and development of ion propulsion systems and survey past, present, and developing technology with their applications to space missions. This analysis addresses the physical design parameters and process that is a part of designing and optimizing a gridded ion thruster. It also identifies operational limits

This paper studies the history and development of ion propulsion systems and survey past, present, and developing technology with their applications to space missions. This analysis addresses the physical design parameters and process that is a part of designing and optimizing a gridded ion thruster. It also identifies operational limits that may be associated with solar-powered ion propulsion systems and posits plausible solutions or alternatives to remedy such limitations. These topics are presented with the intent of reviewing how ion propulsion technology evolved in its journey to develop to today's systems, and to facilitate thought and discussion on where further development of ion propulsion systems can be directed.
ContributorsTang, Justine (Author) / White, Daniel (Thesis director) / Dahm, Werner (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133327-Thumbnail Image.png
Description
This paper outlines the development of a script which utilizes a series of user-defined input parameters to construct base-level CAD models of aircraft landing gear. With an increased focus on computation development of aircraft models to allow for a rapidprototyping design process, this program seeks to allow designers to check

This paper outlines the development of a script which utilizes a series of user-defined input parameters to construct base-level CAD models of aircraft landing gear. With an increased focus on computation development of aircraft models to allow for a rapidprototyping design process, this program seeks to allow designers to check for the validity of design integration before moving forward on systems testing. With this script, users are able to visually analyze the landing gear configurations on an aircraft in both the gear up and gear down configuration. The primary purpose this serves is to determine the validity of the gear's potential to fit within the limited real estate on an aircraft body. This, theoretically, can save time by weeding out infeasible designs before moving forward with subsystem performance testing. The script, developed in Python, constructs CAD models of dual and dual-tandem main landing gear configurations in the CAD program Rhino5. With an included design template consisting of 33 parameters, the script allows for a reasonable trade off between conciseness and flexibility of design.
ContributorsPatrick, Noah Edward (Author) / Takahashi, Timothy (Thesis director) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05