Matching Items (3)
Filtering by

Clear all filters

156206-Thumbnail Image.png
Description
Web applications are ubiquitous. Accessible from almost anywhere, web applications support multiple platforms and can be easily customized. Most people interact with web applications daily for social media, communication, research, purchases, etc. Node.js has gained popularity as a programming language for web applications. A server-side JavaScript implementation, Node.js, allows both

Web applications are ubiquitous. Accessible from almost anywhere, web applications support multiple platforms and can be easily customized. Most people interact with web applications daily for social media, communication, research, purchases, etc. Node.js has gained popularity as a programming language for web applications. A server-side JavaScript implementation, Node.js, allows both the front-end and back-end to be coded in JavaScript. Node.js contains many features such as dynamic inclusion of other modules using a built-in function named require which dynamically locates and loads code.

To be effective, web applications must perform actions quickly while avoiding unexpected interruptions. However, dynamically linked libraries can cause delays and thus downtime, because dynamically linked code must load multiple files, often from disk. As loading is one of the slowest operations a computer performs, seeking from disk can have a negative impact on performance which causes the server to feel less responsive for users. Dynamically linked code can also break when the underlying library is updated. Normally, when trying to update a server, developers will use test servers. However, if the developer accidentally updates a library in a dynamically linked system, it may be incompatible with another portion of the program.

Statically linking code makes it more reliable and faster (to load) than dynamically linking code. The static linking process varies by programming language. Therefore, different static linkers need to be developed for different languages. This thesis describes the creation of a static linker, called FrozenNode, for the popular back-end web application language, Node.js. FrozenNode resolves Node.js applications into a single file that does not rely on dynamic libraries. FrozenNode was built on top of Closure Compiler to accurately process JavaScript. We found that the resolved application was faster and self-contained yielding significant advantages over the dynamically loaded application. Furthermore, both had the same output.

Vulnerabilities in web applications can be found using static analysis tools, however static analysis tools must reason about dynamically linked application. FrozenNode can be used to statically link a Node.js application before being used by a JavaScript static analysis tool.
ContributorsHutchins, James (Author) / Doupe, Adam (Thesis advisor) / Shoshitaishvili, Yan (Committee member) / Zhao, Ziming (Committee member) / Arizona State University (Publisher)
Created2018
135148-Thumbnail Image.png
Description
\English is a programming language, a method of allowing programmers to write instructions such that a computer may understand and execute said instructions in the form of a program. Though many programming languages exist, this particular language is designed for ease of development and heavy optimizability in ways that no

\English is a programming language, a method of allowing programmers to write instructions such that a computer may understand and execute said instructions in the form of a program. Though many programming languages exist, this particular language is designed for ease of development and heavy optimizability in ways that no other programming language is. Building on the principles of Assembly level efficiency, referential integrity, and high order functionality, this language is able to produce extremely efficient code; meanwhile, programmatically defined English-based reusable syntax and a strong, static type system make \English easier to read and write than many existing programming languages. Its generalization of all language structures and components to operators leaves the language syntax open to project-specific syntactical structuring, making it more easily applicable in more cases. The thesis project requirements came in three parts: a compiler to compile \English code into NASM Assembly to produce a final program product; a standard library to define many of the basic operations of the language, including the creation of lists; and C translation library that would utilize \English properties to compile C code using the \English compiler. Though designed and partially coded, the compiler remains incomplete. The standard library, C translation library, and design of the language were completed. Additional tools regarding the language design and implementation were also created, including a Gedit syntax highlighting configuration file; usage documentation describing in a tutorial style the basic usage of the language; and more. Though the thesis project itself may be complete, the \English project will continue in order to produce a new language capable of the abilities possible with the design of this language.
ContributorsDavey, Connor (Author) / Gupta, Sandeep (Thesis director) / Bazzi, Rida (Committee member) / Calliss, Debra (Committee member) / Barrett, The Honors College (Contributor)
Created2016-05
131235-Thumbnail Image.png
DescriptionA two-way deterministic finite pushdown automaton ("2PDA") is developed for the Lua language. This 2PDA is evaluated against both a purpose-built Lua syntax test suite and the test suite used by the reference implementation of Lua, and fully passes both.
ContributorsStevens, Kevin A (Author) / Shoshitaishvili, Yan (Thesis director) / Wang, Ruoyu (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05