Matching Items (55)

Filtering by

Clear all filters

134914-Thumbnail Image.png

Collaborative Computation in Self-Organizing Particle Systems

Description

Many forms of programmable matter have been proposed for various tasks. We use an abstract model of self-organizing particle systems for programmable matter which could be used for a variety of applications, including smart paint and coating materials for engineering

Many forms of programmable matter have been proposed for various tasks. We use an abstract model of self-organizing particle systems for programmable matter which could be used for a variety of applications, including smart paint and coating materials for engineering or programmable cells for medical uses. Previous research using this model has focused on shape formation and other spatial configuration problems, including line formation, compression, and coating. In this work we study foundational computational tasks that exceed the capabilities of the individual constant memory particles described by the model. These tasks represent new ways to use these self-organizing systems, which, in conjunction with previous shape and configuration work, make the systems useful for a wider variety of tasks. We present an implementation of a counter using a line of particles, which makes it possible for the line of particles to count to and store values much larger than their individual capacities. We then present an algorithm that takes a matrix and a vector as input and then sets up and uses a rectangular block of particles to compute the matrix-vector multiplication. This setup also utilizes the counter implementation to store the resulting vector from the matrix-vector multiplication. Operations such as counting and matrix multiplication can leverage the distributed and dynamic nature of the self-organizing system to be more efficient and adaptable than on traditional linear computing hardware. Such computational tools also give the systems more power to make complex decisions when adapting to new situations or to analyze the data they collect, reducing reliance on a central controller for setup and output processing. Finally, we demonstrate an application of similar types of computations with self-organizing systems to image processing, with an implementation of an image edge detection algorithm.

Contributors

Created

Date Created
2016-12

Enhancing Student Learning Through Adaptive Sentence Generation

Description

Education of any skill based subject, such as mathematics or language, involves a significant amount of repetition and pratice. According to the National Survey of Student Engagements, students spend on average 17 hours per week reviewing and practicing material previously

Education of any skill based subject, such as mathematics or language, involves a significant amount of repetition and pratice. According to the National Survey of Student Engagements, students spend on average 17 hours per week reviewing and practicing material previously learned in a classroom, with higher performing students showing a tendency to spend more time practicing. As such, learning software has emerged in the past several decades focusing on providing a wide range of examples, practice problems, and situations for users to exercise their skills. Notably, math students have benefited from software that procedurally generates a virtually infinite number of practice problems and their corresponding solutions. This allows for instantaneous feedback and automatic generation of tests and quizzes. Of course, this is only possible because software is capable of generating and verifying a virtually endless supply of sample problems across a wide range of topics within mathematics. While English learning software has progressed in a similar manner, it faces a series of hurdles distinctly different from those of mathematics. In particular, there is a wide range of exception cases present in English grammar. Some words have unique spellings for their plural forms, some words have identical spelling for plural forms, and some words are conjugated differently for only one particular tense or person-of-speech. These issues combined make the problem of generating grammatically correct sentences complicated. To compound to this problem, the grammar rules in English are vast, and often depend on the context in which they are used. Verb-tense agreement (e.g. "I eat" vs "he eats"), and conjugation of irregular verbs (e.g. swim -> swam) are common examples. This thesis presents an algorithm designed to randomly generate a virtually infinite number of practice problems for students of English as a second language. This approach differs from other generation approaches by generating based on a context set by educators, so that problems can be generated in the context of what students are currently learning. The algorithm is validated through a study in which over 35 000 sentences generated by the algorithm are verified by multiple grammar checking algorithms, and a subset of the sentences are validated against 3 education standards by a subject matter expert in the field. The study found that this approach has a significantly reduced grammar error ratio compared to other generation algorithms, and shows potential where context specification is concerned.

Contributors

Agent

Created

Date Created
2016-05

149501-Thumbnail Image.png

Detecting sybil nodes in static and dynamic networks

Description

Peer-to-peer systems are known to be vulnerable to the Sybil attack. The lack of a central authority allows a malicious user to create many fake identities (called Sybil nodes) pretending to be independent honest nodes. The goal of the malicious

Peer-to-peer systems are known to be vulnerable to the Sybil attack. The lack of a central authority allows a malicious user to create many fake identities (called Sybil nodes) pretending to be independent honest nodes. The goal of the malicious user is to influence the system on his/her behalf. In order to detect the Sybil nodes and prevent the attack, a reputation system is used for the nodes, built through observing its interactions with its peers. The construction makes every node a part of a distributed authority that keeps records on the reputation and behavior of the nodes. Records of interactions between nodes are broadcast by the interacting nodes and honest reporting proves to be a Nash Equilibrium for correct (non-Sybil) nodes. In this research is argued that in realistic communication schedule scenarios, simple graph-theoretic queries such as the computation of Strongly Connected Components and Densest Subgraphs, help in exposing those nodes most likely to be Sybil, which are then proved to be Sybil or not through a direct test executed by some peers.

Contributors

Agent

Created

Date Created
2010

152500-Thumbnail Image.png

Resource allocation in communication and social networks

Description

As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking

As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network environment. This dissertation focuses on two different kinds of networks - communication and social, and studies resource allocation problems in these networks. The study on communication networks is further divided into different networking technologies - wired and wireless, optical and mobile, airborne and terrestrial. Since nodes in an airborne network (AN) are heterogeneous and mobile, the design of a reliable and robust AN is highly complex. The dissertation studies connectivity and fault-tolerance issues in ANs and proposes algorithms to compute the critical transmission range in fault free, faulty and delay tolerant scenarios. Just as in the case of ANs, power optimization and fault tolerance are important issues in wireless sensor networks (WSN). In a WSN, a tree structure is often used to deliver sensor data to a sink node. In a tree, failure of a node may disconnect the tree. The dissertation investigates the problem of enhancing the fault tolerance capability of data gathering trees in WSN. The advent of OFDM technology provides an opportunity for efficient resource utilization in optical networks and also introduces a set of novel problems, such as routing and spectrum allocation (RSA) problem. This dissertation proves that RSA problem is NP-complete even when the network topology is a chain, and proposes approximation algorithms. In the domain of social networks, the focus of this dissertation is study of influence propagation in presence of active adversaries. In a social network multiple vendors may attempt to influence the nodes in a competitive fashion. This dissertation investigates the scenario where the first vendor has already chosen a set of nodes and the second vendor, with the knowledge of the choice of the first, attempts to identify a smallest set of nodes so that after the influence propagation, the second vendor's market share is larger than the first.

Contributors

Agent

Created

Date Created
2014

152385-Thumbnail Image.png

Detection of advanced bots in smartphones through user profiling

Description

This thesis addresses the ever increasing threat of botnets in the smartphone domain and focuses on the Android platform and the botnets using Online Social Networks (OSNs) as Command and Control (C&C;) medium. With any botnet, C&C; is one of

This thesis addresses the ever increasing threat of botnets in the smartphone domain and focuses on the Android platform and the botnets using Online Social Networks (OSNs) as Command and Control (C&C;) medium. With any botnet, C&C; is one of the components on which the survival of botnet depends. Individual bots use the C&C; channel to receive commands and send the data. This thesis develops active host based approach for identifying the presence of bot based on the anomalies in the usage patterns of the user before and after the bot is installed on the user smartphone and alerting the user to the presence of the bot. A profile is constructed for each user based on the regular web usage patterns (achieved by intercepting the http(s) traffic) and implementing machine learning techniques to continuously learn the user's behavior and changes in the behavior and all the while looking for any anomalies in the user behavior above a threshold which will cause the user to be notified of the anomalous traffic. A prototype bot which uses OSN s as C&C; channel is constructed and used for testing. Users are given smartphones(Nexus 4 and Galaxy Nexus) running Application proxy which intercepts http(s) traffic and relay it to a server which uses the traffic and constructs the model for a particular user and look for any signs of anomalies. This approach lays the groundwork for the future host-based counter measures for smartphone botnets using OSN s as C&C; channel.

Contributors

Agent

Created

Date Created
2013

152082-Thumbnail Image.png

Coping with selfish behavior in networks using game theory

Description

While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and

While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and selfishly, and maybe cooperate with a small group of other entities only when this form of coalition yields a better return. The interaction among multiple independent decision-makers necessitates the use of game theory, including economic notions related to markets and incentives. In this dissertation, we are interested in modeling, analyzing, addressing network problems caused by the selfish behavior of network entities. First, we study how the selfish behavior of network entities affects the system performance while users are competing for limited resource. For this resource allocation domain, we aim to study the selfish routing problem in networks with fair queuing on links, the relay assignment problem in cooperative networks, and the channel allocation problem in wireless networks. Another important aspect of this dissertation is the study of designing efficient mechanisms to incentivize network entities to achieve certain system objective. For this incentive mechanism domain, we aim to motivate wireless devices to serve as relays for cooperative communication, and to recruit smartphones for crowdsourcing. In addition, we apply different game theoretic approaches to problems in security and privacy domain. For this domain, we aim to analyze how a user could defend against a smart jammer, who can quickly learn about the user's transmission power. We also design mechanisms to encourage mobile phone users to participate in location privacy protection, in order to achieve k-anonymity.

Contributors

Agent

Created

Date Created
2013

153872-Thumbnail Image.png

Making thin data thick: user behavior analysis with minimum information

Description

With the rise of social media, user-generated content has become available at an unprecedented scale. On Twitter, 1 billion tweets are posted every 5 days and on Facebook, 20 million links are shared every 20 minutes. These massive collections of

With the rise of social media, user-generated content has become available at an unprecedented scale. On Twitter, 1 billion tweets are posted every 5 days and on Facebook, 20 million links are shared every 20 minutes. These massive collections of user-generated content have introduced the human behavior's big-data.

This big data has brought about countless opportunities for analyzing human behavior at scale. However, is this data enough? Unfortunately, the data available at the individual-level is limited for most users. This limited individual-level data is often referred to as thin data. Hence, researchers face a big-data paradox, where this big-data is a large collection of mostly limited individual-level information. Researchers are often constrained to derive meaningful insights regarding online user behavior with this limited information. Simply put, they have to make thin data thick.

In this dissertation, how human behavior's thin data can be made thick is investigated. The chief objective of this dissertation is to demonstrate how traces of human behavior can be efficiently gleaned from the, often limited, individual-level information; hence, introducing an all-inclusive user behavior analysis methodology that considers social media users with different levels of information availability. To that end, the absolute minimum information in terms of both link or content data that is available for any social media user is determined. Utilizing only minimum information in different applications on social media such as prediction or recommendation tasks allows for solutions that are (1) generalizable to all social media users and that are (2) easy to implement. However, are applications that employ only minimum information as effective or comparable to applications that use more information?

In this dissertation, it is shown that common research challenges such as detecting malicious users or friend recommendation (i.e., link prediction) can be effectively performed using only minimum information. More importantly, it is demonstrated that unique user identification can be achieved using minimum information. Theoretical boundaries of unique user identification are obtained by introducing social signatures. Social signatures allow for user identification in any large-scale network on social media. The results on single-site user identification are generalized to multiple sites and it is shown how the same user can be uniquely identified across multiple sites using only minimum link or content information.

The findings in this dissertation allows finding the same user across multiple sites, which in turn has multiple implications. In particular, by identifying the same users across sites, (1) patterns that users exhibit across sites are identified, (2) how user behavior varies across sites is determined, and (3) activities that are observed only across sites are identified and studied.

Contributors

Agent

Created

Date Created
2015

153909-Thumbnail Image.png

SDN-based proactive defense mechanism in a cloud system

Description

Cloud computing is known as a new and powerful computing paradigm. This new generation of network computing model delivers both software and hardware as on-demand resources and various services over the Internet. However, the security concerns prevent users from adopting

Cloud computing is known as a new and powerful computing paradigm. This new generation of network computing model delivers both software and hardware as on-demand resources and various services over the Internet. However, the security concerns prevent users from adopting the cloud-based solutions to fulfill the IT requirement for many business critical computing. Due to the resource-sharing and multi-tenant nature of cloud-based solutions, cloud security is especially the most concern in the Infrastructure as a Service (IaaS). It has been attracting a lot of research and development effort in the past few years.

Virtualization is the main technology of cloud computing to enable multi-tenancy.

Computing power, storage, and network are all virtualizable to be shared in an IaaS system. This important technology makes abstract infrastructure and resources available to users as isolated virtual machines (VMs) and virtual networks (VNs). However, it also increases vulnerabilities and possible attack surfaces in the system, since all users in a cloud share these resources with others or even the attackers. The promising protection mechanism is required to ensure strong isolation, mediated sharing, and secure communications between VMs. Technologies for detecting anomalous traffic and protecting normal traffic in VNs are also needed. Therefore, how to secure and protect the private traffic in VNs and how to prevent the malicious traffic from shared resources are major security research challenges in a cloud system.

This dissertation proposes four novel frameworks to address challenges mentioned above. The first work is a new multi-phase distributed vulnerability, measurement, and countermeasure selection mechanism based on the attack graph analytical model. The second work is a hybrid intrusion detection and prevention system to protect VN and VM using virtual machines introspection (VMI) and software defined networking (SDN) technologies. The third work further improves the previous works by introducing a VM profiler and VM Security Index (VSI) to keep track the security status of each VM and suggest the optimal countermeasure to mitigate potential threats. The final work is a SDN-based proactive defense mechanism for a cloud system using a reconfiguration model and moving target defense approaches to actively and dynamically change the virtual network configuration of a cloud system.

Contributors

Agent

Created

Date Created
2015

153094-Thumbnail Image.png

Privacy preserving controls for Android applications

Description

Android is currently the most widely used mobile operating system. The permission model in Android governs the resource access privileges of applications. The permission model however is amenable to various attacks, including re-delegation attacks, background snooping attacks and disclosure of

Android is currently the most widely used mobile operating system. The permission model in Android governs the resource access privileges of applications. The permission model however is amenable to various attacks, including re-delegation attacks, background snooping attacks and disclosure of private information. This thesis is aimed at understanding, analyzing and performing forensics on application behavior. This research sheds light on several security aspects, including the use of inter-process communications (IPC) to perform permission re-delegation attacks.

Android permission system is more of app-driven rather than user controlled, which means it is the applications that specify their permission requirement and the only thing which the user can do is choose not to install a particular application based on the requirements. Given the all or nothing choice, users succumb to pressures and needs to accept permissions requested. This thesis proposes a couple of ways for providing the users finer grained control of application privileges. The same methods can be used to evade the Permission Re-delegation attack.

This thesis also proposes and implements a novel methodology in Android that can be used to control the access privileges of an Android application, taking into consideration the context of the running application. This application-context based permission usage is further used to analyze a set of sample applications. We found the evidence of applications spoofing or divulging user sensitive information such as location information, contact information, phone id and numbers, in the background. Such activities can be used to track users for a variety of privacy-intrusive purposes. We have developed implementations that minimize several forms of privacy leaks that are routinely done by stock applications.

Contributors

Agent

Created

Date Created
2014

154329-Thumbnail Image.png

Privacy-preserving mobile crowd sensing

Description

The presence of a rich set of embedded sensors on mobile devices has been fuelling various sensing applications regarding the activities of individuals and their surrounding environment, and these ubiquitous sensing-capable mobile devices are pushing the new paradigm of Mobile

The presence of a rich set of embedded sensors on mobile devices has been fuelling various sensing applications regarding the activities of individuals and their surrounding environment, and these ubiquitous sensing-capable mobile devices are pushing the new paradigm of Mobile Crowd Sensing (MCS) from concept to reality. MCS aims to outsource sensing data collection to mobile users and it could revolutionize the traditional ways of sensing data collection and processing. In the meantime, cloud computing provides cloud-backed infrastructures for mobile devices to provision their capabilities with network access. With enormous computational and storage resources along with sufficient bandwidth, it functions as the hub to handle the sensing service requests from sensing service consumers and coordinate sensing task assignment among eligible mobile users to reach a desired quality of sensing service. This paper studies the problem of sensing task assignment to mobile device owners with specific spatio-temporal traits to minimize the cost and maximize the utility in MCS while adhering to QoS constraints. Greedy approaches and hybrid solutions combined with bee algorithms are explored to address the problem.

Moreover, the privacy concerns arise with the widespread deployment of MCS from both the data contributors and the sensing service consumers. The uploaded sensing data, especially those tagged with spatio-temporal information, will disclose the personal information of the data contributors. In addition, the sensing service requests can reveal the personal interests of service consumers. To address the privacy issues, this paper constructs a new framework named Privacy-Preserving Mobile Crowd Sensing (PP-MCS) to leverage the sensing capabilities of ubiquitous mobile devices and cloud infrastructures. PP-MCS has a distributed architecture without relying on trusted third parties for privacy-preservation. In PP-MCS, the sensing service consumers can retrieve data without revealing the real data contributors. Besides, the individual sensing records can be compared against the aggregation result while keeping the values of sensing records unknown, and the k-nearest neighbors could be approximately identified without privacy leaks. As such, the privacy of the data contributors and the sensing service consumers can be protected to the greatest extent possible.

Contributors

Agent

Created

Date Created
2016