Matching Items (49)
Filtering by
- All Subjects: Computer Science
- Creators: Maciejewski, Ross

The Global Change Assessment Model (GCAM) is an integrated assessment tool for exploring consequences and responses to global change. However, the current iteration of GCAM relies on NetCDF file outputs which need to be exported for visualization and analysis purposes. Such a requirement limits the uptake of this modeling platform for analysts that may wish to explore future scenarios. This work has focused on a web-based geovisual analytics interface for GCAM. Challenges of this work include enabling both domain expert and model experts to be able to functionally explore the model. Furthermore, scenario analysis has been widely applied in climate science to understand the impact of climate change on the future human environment. The inter-comparison of scenario analysis remains a big challenge in both the climate science and visualization communities. In a close collaboration with the Global Change Assessment Model team, I developed the first visual analytics interface for GCAM with a series of interactive functions to help users understand the simulated impact of climate change on sectors of the global economy, and at the same time allow them to explore inter comparison of scenario analysis with GCAM models. This tool implements a hierarchical clustering approach to allow inter-comparison and similarity analysis among multiple scenarios over space, time, and multiple attributes through a set of coordinated multiple views. After working with this tool, the scientists from the GCAM team agree that the geovisual analytics tool can facilitate scenario exploration and enable scientific insight gaining process into scenario comparison. To demonstrate my work, I present two case studies, one of them explores the potential impact that the China south-north water transportation project in the Yangtze River basin will have on projected water demands. The other case study using GCAM models demonstrates how the impact of spatial variations and scales on similarity analysis of climate scenarios varies at world, continental, and country scales.

Functional magnetic resonance imaging (fMRI) has been widely used to measure the retinotopic organization of early visual cortex in the human brain. Previous studies have identified multiple visual field maps (VFMs) based on statistical analysis of fMRI signals, but the resulting geometry has not been fully characterized with mathematical models. This thesis explores using concepts from computational conformal geometry to create a custom software framework for examining and generating quantitative mathematical models for characterizing the geometry of early visual areas in the human brain. The software framework includes a graphical user interface built on top of a selected core conformal flattening algorithm and various software tools compiled specifically for processing and examining retinotopic data. Three conformal flattening algorithms were implemented and evaluated for speed and how well they preserve the conformal metric. All three algorithms performed well in preserving the conformal metric but the speed and stability of the algorithms varied. The software framework performed correctly on actual retinotopic data collected using the standard travelling-wave experiment. Preliminary analysis of the Beltrami coefficient for the early data set shows that selected regions of V1 that contain reasonably smooth eccentricity and polar angle gradients do show significant local conformality, warranting further investigation of this approach for analysis of early and higher visual cortex.

In visualizing information hierarchies, icicle plots are efficient diagrams in that they provide the user a straightforward layout for different levels of data in a hierarchy and enable the user to compare items based on the item width. However, as the size of the hierarchy grows large, the items in an icicle plot end up being small and indistinguishable. In this thesis, by maintaining the positive characteristics of traditional
icicle plots and incorporating new features such as dynamic diagram and active layer, we developed an interactive visualization that allows the user to selectively drill down or roll up to review different levels of data in a large hierarchy, to change the hierarchical
structure to detect potential patterns, and to maintain an overall understanding of the
current hierarchical structure.

This thesis focuses on generating and exploring design variations for architectural and urban layouts. I propose to study this general problem in three selected contexts.
First, I introduce a framework to generate many variations of a facade design that look similar to a given facade layout. Starting from an input image, the facade is hierarchically segmented and labeled with a collection of manual and automatic tools. The user can then model constraints that should be maintained in any variation of the input facade design. Subsequently, facade variations are generated for different facade sizes, where multiple variations can be produced for a certain size.
Second, I propose a method for a user to understand and systematically explore good building layouts. Starting from a discrete set of good layouts, I analytically characterize the local shape space of good layouts around each initial layout, compactly encode these spaces, and link them to support transitions across the different local spaces. I represent such transitions in the form of a portal graph. The user can then use the portal graph, along with the family of local shape spaces, to globally and locally explore the space of good building layouts.
Finally, I propose an algorithm to computationally design street networks that balance competing requirements such as quick travel time and reduced through traffic in residential neighborhoods. The user simply provides high-level functional specifications for a target neighborhood, while my algorithm best satisfies the specification by solving for both connectivity and geometric layout of the network.

Vectorization is an important process in the fields of graphics and image processing. In computer-aided design (CAD), drawings are scanned, vectorized and written as CAD files in a process called paper-to-CAD conversion or drawing conversion. In geographic information systems (GIS), satellite or aerial images are vectorized to create maps. In graphic design and photography, raster graphics can be vectorized for easier usage and resizing. Vector arts are popular as online contents. Vectorization takes raster images, point clouds, or a series of scattered data samples in space, outputs graphic elements of various types including points, lines, curves, polygons, parametric curves and surface patches. The vectorized representations consist of a different set of components and elements from that of the inputs. The change of representation is the key difference between vectorization and practices such as smoothing and filtering. Compared to the inputs, the vector outputs provide higher order of control and attributes such as smoothness. Their curvatures or gradients at the points are scale invariant and they are more robust data sources for downstream applications and analysis. This dissertation explores and broadens the scope of vectorization in various contexts. I propose a novel vectorization algorithm on raster images along with several new applications for vectorization mechanism in processing and analysing both 2D and 3D data sets. The main components of the research are: using vectorization in generating 3D models from 2D floor plans; a novel raster image vectorization methods and its applications in computer vision, image processing, and animation; and vectorization in visualizing and information extraction in 3D laser scan data. I also apply vectorization analysis towards human body scans and rock surface scans to show insights otherwise difficult to obtain.

Predictive analytics embraces an extensive area of techniques from statistical modeling to machine learning to data mining and is applied in business intelligence, public health, disaster management and response, and many other fields. To date, visualization has been broadly used to support tasks in the predictive analytics pipeline under the underlying assumption that a human-in-the-loop can aid the analysis by integrating domain knowledge that might not be broadly captured by the system. Primary uses of visualization in the predictive analytics pipeline have focused on data cleaning, exploratory analysis, and diagnostics. More recently, numerous visual analytics systems for feature selection, incremental learning, and various prediction tasks have been proposed to support the growing use of complex models, agent-specific optimization, and comprehensive model comparison and result exploration. Such work is being driven by advances in interactive machine learning and the desire of end-users to understand and engage with the modeling process. However, despite the numerous and promising applications of visual analytics to predictive analytics tasks, work to assess the effectiveness of predictive visual analytics is lacking.
This thesis studies the current methodologies in predictive visual analytics. It first defines the scope of predictive analytics and presents a predictive visual analytics (PVA) pipeline. Following the proposed pipeline, a predictive visual analytics framework is developed to be used to explore under what circumstances a human-in-the-loop prediction process is most effective. This framework combines sentiment analysis, feature selection mechanisms, similarity comparisons and model cross-validation through a variety of interactive visualizations to support analysts in model building and prediction. To test the proposed framework, an instantiation for movie box-office prediction is developed and evaluated. Results from small-scale user studies are presented and discussed, and a generalized user study is carried out to assess the role of predictive visual analytics under a movie box-office prediction scenario.

A Visual Analytics Process for Exploring Risk and Vulnerability in International Food Trade Networks
The rise in globalization has led to regional climate events having an increased effect on global food security. These indirect first- and second-order effects are generally geographically disparate from the region experiencing the climate event. Without understanding the topology of the food trade network, international aid may be naively directed to the countries directly experiencing the climate event and not to countries that will face potential food insecurity due to that event. This thesis focuses on the development of a visual analytics system for exploring second-order effects of climate change under the lens of global trade. In order to visualize how climate change impacts the world trade network of agricultural goods I have developed an interactive data visualization platform for analysis of the interaction between climate events and the trade network. The proposed visual analytics system focuses on visualizing current trade dependencies at a more granular level than the currently available tools and to aid in the identification of future vulnerabilities. To demonstrate the applicability of the tool, two case studies are described. The first case study focuses on the Chinese drought of 2011 and its impact on the global trade network and food security. The second case study will model the potential impact of a climate event affecting production in the United States, a large supplier of corn, to demonstrate the potential consequence of cascading effects in the global trade network.

With the rise of the Big Data Era, an exponential amount of network data is being generated at an unprecedented rate across a wide-range of high impact micro and macro areas of research---from protein interaction to social networks. The critical challenge is translating this large scale network data into actionable information.
A key task in the data translation is the analysis of network connectivity via marked nodes---the primary focus of our research. We have developed a framework for analyzing network connectivity via marked nodes in large scale graphs, utilizing novel algorithms in three interrelated areas: (1) analysis of a single seed node via it’s ego-centric network (AttriPart algorithm); (2) pathway identification between two seed nodes (K-Simple Shortest Paths Multithreaded and Search Reduced (KSSPR) algorithm); and (3) tree detection, defining the interaction between three or more seed nodes (Shortest Path MST algorithm).
In an effort to address both fundamental and applied research issues, we have developed the LocalForcasting algorithm to explore how network connectivity analysis can be applied to local community evolution and recommender systems. The goal is to apply the LocalForecasting algorithm to various domains---e.g., friend suggestions in social networks or future collaboration in co-authorship networks. This algorithm utilizes link prediction in combination with the AttriPart algorithm to predict future connections in local graph partitions.
Results show that our proposed AttriPart algorithm finds up to 1.6x denser local partitions, while running approximately 43x faster than traditional local partitioning techniques (PageRank-Nibble). In addition, our LocalForecasting algorithm demonstrates a significant improvement in the number of nodes and edges correctly predicted over baseline methods. Furthermore, results for the KSSPR algorithm demonstrate a speed-up of up to 2.5x the standard k-simple shortest paths algorithm.

Testing and Verification of Cyber-Physical Systems (CPS) is a challenging problem. The challenge arises as a result of the complex interactions between the components of these systems: the digital control, and the physical environment. Furthermore, the software complexity that governs the high-level control logic in these systems is increasing day by day. As a result, in recent years, both the academic community and the industry have been heavily invested in developing tools and methodologies for the development of safety-critical systems. One scalable approach in testing and verification of these systems is through guided system simulation using stochastic optimization techniques. The goal of the stochastic optimizer is to find system behavior that does not meet the intended specifications.
In this dissertation, three methods that facilitate the testing and verification process for CPS are presented:
1. A graphical formalism and tool which enables the elicitation of formal requirements. To evaluate the performance of the tool, a usability study is conducted.
2. A parameter mining method to infer, analyze, and visually represent falsifying ranges for parametrized system specifications.
3. A notion of conformance between a CPS model and implementation along with a testing framework.
The methods are evaluated over high-fidelity case studies from the industry.

Recent trends in big data storage systems show a shift from disk centric models to memory centric models. The primary challenges faced by these systems are speed, scalability, and fault tolerance. It is interesting to investigate the performance of these two models with respect to some big data applications. This thesis studies the performance of Ceph (a disk centric model) and Alluxio (a memory centric model) and evaluates whether a hybrid model provides any performance benefits with respect to big data applications. To this end, an application TechTalk is created that uses Ceph to store data and Alluxio to perform data analytics. The functionalities of the application include offline lecture storage, live recording of classes, content analysis and reference generation. The knowledge base of videos is constructed by analyzing the offline data using machine learning techniques. This training dataset provides knowledge to construct the index of an online stream. The indexed metadata enables the students to search, view and access the relevant content. The performance of the application is benchmarked in different use cases to demonstrate the benefits of the hybrid model.