Matching Items (17)
Filtering by
- All Subjects: Computer Science
- Creators: School of Mathematical and Statistical Sciences
- Member of: Barrett, The Honors College Thesis/Creative Project Collection
- Resource Type: Text

Among classes in the Computer Science curriculum at Arizona State University, Automata Theory is widely considered to be one of the most difficult. Many Computer Science concepts have strong visual components that make them easier to understand. Binary trees, Dijkstra's algorithm, pointers, and even more basic concepts such as arrays all have very strong visual components. Not only that, but resources for them are abundantly available online. Automata Theory, on the other hand, is the first Computer Science course students encounter that has a significant focus on deep theory. Many
of the concepts can be difficult to visualize, or at least take a lot of effort to do so. Furthermore, visualizers for finite state machines are hard to come by. Because I thoroughly enjoyed learning about Automata Theory and parsers, I wanted to create a program that involved the two. Additionally, I thought creating a program for visualizing automata would help students who struggle with Automata Theory develop a stronger understanding of it.

This thesis explores how large scale cyber exercises work in the 21st century, going in-depth on Exercise Cyber Shield, the Department of Defense’s largest unclassified cyber defense exercise run by the Army National Guard. It highlights why these cyber exercises are so relevant, going over several large scale cyber attacks that have occurred in the past year and the impact they caused. This research aims to illuminate the intricacies around cyber exercise assessment involving manual vs automated scoring systems; this is brought back to work on creating an automated scoring engine for Exercise Cyber Shield. This thesis provides an inside look behind the scenes of the operations of the largest unclassified cyber defense exercise in the United States, including conversations with the Exercise Officer-In-Charge of Cyber Shield as well as a cyber exercise expert working on assessment of Exercise Cyber Shield, and the research also includes information from past final reports for Cyber Shield. Issues that these large scale cyber exercises have faced over the years are brought to light, and attempts at solutions are discussed.

Covering subsequences with sets of permutations arises in many applications, including event-sequence testing. Given a set of subsequences to cover, one is often interested in knowing the fewest number of permutations required to cover each subsequence, and in finding an explicit construction of such a set of permutations that has size close to or equal to the minimum possible. The construction of such permutation coverings has proven to be computationally difficult. While many examples for permutations of small length have been found, and strong asymptotic behavior is known, there are few explicit constructions for permutations of intermediate lengths. Most of these are generated from scratch using greedy algorithms. We explore a different approach here. Starting with a set of permutations with the desired coverage properties, we compute local changes to individual permutations that retain the total coverage of the set. By choosing these local changes so as to make one permutation less "essential" in maintaining the coverage of the set, our method attempts to make a permutation completely non-essential, so it can be removed without sacrificing total coverage. We develop a post-optimization method to do this and present results on sequence covering arrays and other types of permutation covering problems demonstrating that it is surprisingly effective.

Bots tamper with social media networks by artificially inflating the popularity of certain topics. In this paper, we define what a bot is, we detail different motivations for bots, we describe previous work in bot detection and observation, and then we perform bot detection of our own. For our bot detection, we are interested in bots on Twitter that tweet Arabic extremist-like phrases. A testing dataset is collected using the honeypot method, and five different heuristics are measured for their effectiveness in detecting bots. The model underperformed, but we have laid the ground-work for a vastly untapped focus on bot detection: extremist ideal diffusion through bots.

A primary goal in computer science is to develop autonomous systems. Usually, we provide computers with tasks and rules for completing those tasks, but what if we could extend this type of system to physical technology as well? In the field of programmable matter, researchers are tasked with developing synthetic materials that can change their physical properties \u2014 such as color, density, and even shape \u2014 based on predefined rules or continuous, autonomous collection of input. In this research, we are most interested in particles that can perform computations, bond with other particles, and move. In this paper, we provide a theoretical particle model that can be used to simulate the performance of such physical particle systems, as well as an algorithm to perform expansion, wherein these particles can be used to enclose spaces or even objects.

Many programmable matter systems have been proposed and realized recently, each often tailored toward a particular task or physical setting. In our work on self-organizing particle systems, we abstract away from specific settings and instead describe programmable matter as a collection of simple computational elements (to be referred to as particles) with limited computational power that each perform fully distributed, local, asynchronous algorithms to solve system-wide problems of movement, configuration, and coordination. In this thesis, we focus on the compression problem, in which the particle system gathers as tightly together as possible, as in a sphere or its equivalent in the presence of some underlying geometry. While there are many ways to formalize what it means for a particle system to be compressed, we address three different notions of compression: (1) local compression, in which each individual particle utilizes local rules to create an overall convex structure containing no holes, (2) hole elimination, in which the particle system seeks to detect and eliminate any holes it contains, and (3) alpha-compression, in which the particle system seeks to shrink its perimeter to be within a constant factor of the minimum possible value. We analyze the behavior of each of these algorithms, examining correctness and convergence where appropriate. In the case of the Markov Chain Algorithm for Compression, we provide improvements to the original bounds for the bias parameter lambda which influences the system to either compress or expand. Lastly, we briefly discuss contributions to the problem of leader election--in which a particle system elects a single leader--since it acts as an important prerequisite for compression algorithms that use a predetermined seed particle.

Polar ice masses can be valuable indicators of trends in global climate. In an effort to better understand the dynamics of Arctic ice, this project analyzes sea ice concentration anomaly data collected over gridded regions (cells) and builds graphs based upon high correlations between cells. These graphs offer the opportunity to use metrics such as clustering coefficients and connected components to isolate representative trends in ice masses. Based upon this analysis, the structure of sea ice graphs differs at a statistically significant level from random graphs, and several regions show erratically decreasing trends in sea ice concentration.

The original version of Helix, the one I pitched when first deciding to make a video game
for my thesis, is an action-platformer, with the intent of metroidvania-style progression
and an interconnected world map.
The current version of Helix is a turn based role-playing game, with the intent of roguelike
gameplay and a dark fantasy theme. We will first be exploring the challenges that came
with programming my own game - not quite from scratch, but also without a prebuilt
engine - then transition into game design and how Helix has evolved from its original form
to what we see today.

A two-way deterministic finite pushdown automaton ("2PDA") is developed for the Lua language. This 2PDA is evaluated against both a purpose-built Lua syntax test suite and the test suite used by the reference implementation of Lua, and fully passes both.

We consider programmable matter as a collection of simple computational elements (or particles) that self-organize to solve system-wide problems of movement, configuration, and coordination. Here, we focus on the compression problem, in which the particle system gathers as tightly together as possible, as in a sphere or its equivalent in the presence of some underlying geometry. Within this model a configuration of particles can be represented as a unique closed self-avoiding walk on the triangular lattice. In this paper we will examine the bias parameter of a Markov chain based algorithm that solves the compression problem under the geometric amoebot model, for particle systems that begin in a connected configuration with no holes. This bias parameter, $\lambda$, determines the behavior of the algorithm. It has been shown that for $\lambda > 2+\sqrt{2}$, with all but exponentially small probability, the algorithm achieves compression. Additionally the same algorithm can be used for expansion for small values of $\lambda$; in particular, for all $0 < \lambda < \sqrt{\tau}$, where $\lim_{n\to\infty} {(p_n)^{1
}}=\tau$. This research will focus on improving approximations on the lower bound of $\tau$. Toward this end we will examine algorithmic enumeration, and series analysis for self-avoiding polygons.