Matching Items (509)

Filtering by

Clear all filters

Robust margin based classifiers for small sample data

Description

In many classication problems data samples cannot be collected easily, example in drug trials, biological experiments and study on cancer patients. In many situations the data set size is small and there are many outliers. When classifying such data, example

In many classication problems data samples cannot be collected easily, example in drug trials, biological experiments and study on cancer patients. In many situations the data set size is small and there are many outliers. When classifying such data, example cancer vs normal patients the consequences of mis-classication are probably more important than any other data type, because the data point could be a cancer patient or the classication decision could help determine what gene might be over expressed and perhaps a cause of cancer. These mis-classications are typically higher in the presence of outlier data points. The aim of this thesis is to develop a maximum margin classier that is suited to address the lack of robustness of discriminant based classiers (like the Support Vector Machine (SVM)) to noise and outliers. The underlying notion is to adopt and develop a natural loss function that is more robust to outliers and more representative of the true loss function of the data. It is demonstrated experimentally that SVM's are indeed susceptible to outliers and that the new classier developed, here coined as Robust-SVM (RSVM), is superior to all studied classier on the synthetic datasets. It is superior to the SVM in both the synthetic and experimental data from biomedical studies and is competent to a classier derived on similar lines when real life data examples are considered.

Contributors

Agent

Created

Date Created
2011

149503-Thumbnail Image.png

Stereo based visual odometry

Description

The exponential rise in unmanned aerial vehicles has necessitated the need for accurate pose estimation under any extreme conditions. Visual Odometry (VO) is the estimation of position and orientation of a vehicle based on analysis of a sequence of images

The exponential rise in unmanned aerial vehicles has necessitated the need for accurate pose estimation under any extreme conditions. Visual Odometry (VO) is the estimation of position and orientation of a vehicle based on analysis of a sequence of images captured from a camera mounted on it. VO offers a cheap and relatively accurate alternative to conventional odometry techniques like wheel odometry, inertial measurement systems and global positioning system (GPS). This thesis implements and analyzes the performance of a two camera based VO called Stereo based visual odometry (SVO) in presence of various deterrent factors like shadows, extremely bright outdoors, wet conditions etc... To allow the implementation of VO on any generic vehicle, a discussion on porting of the VO algorithm to android handsets is presented too. The SVO is implemented in three steps. In the first step, a dense disparity map for a scene is computed. To achieve this we utilize sum of absolute differences technique for stereo matching on rectified and pre-filtered stereo frames. Epipolar geometry is used to simplify the matching problem. The second step involves feature detection and temporal matching. Feature detection is carried out by Harris corner detector. These features are matched between two consecutive frames using the Lucas-Kanade feature tracker. The 3D co-ordinates of these matched set of features are computed from the disparity map obtained from the first step and are mapped into each other by a translation and a rotation. The rotation and translation is computed using least squares minimization with the aid of Singular Value Decomposition. Random Sample Consensus (RANSAC) is used for outlier detection. This comprises the third step. The accuracy of the algorithm is quantified based on the final position error, which is the difference between the final position computed by the SVO algorithm and the final ground truth position as obtained from the GPS. The SVO showed an error of around 1% under normal conditions for a path length of 60 m and around 3% in bright conditions for a path length of 130 m. The algorithm suffered in presence of shadows and vibrations, with errors of around 15% and path lengths of 20 m and 100 m respectively.

Contributors

Agent

Created

Date Created
2010

152495-Thumbnail Image.png

An ontology-based approach to attribute management in ABAC environment

Description

Attribute Based Access Control (ABAC) mechanisms have been attracting a lot of interest from the research community in recent times. This is especially because of the flexibility and extensibility it provides by using attributes assigned to subjects as the basis

Attribute Based Access Control (ABAC) mechanisms have been attracting a lot of interest from the research community in recent times. This is especially because of the flexibility and extensibility it provides by using attributes assigned to subjects as the basis for access control. ABAC enables an administrator of a server to enforce access policies on the data, services and other such resources fairly easily. It also accommodates new policies and changes to existing policies gracefully, thereby making it a potentially good mechanism for implementing access control in large systems, particularly in today's age of Cloud Computing. However management of the attributes in ABAC environment is an area that has been little touched upon. Having a mechanism to allow multiple ABAC based systems to share data and resources can go a long way in making ABAC scalable. At the same time each system should be able to specify their own attribute sets independently. In the research presented in this document a new mechanism is proposed that would enable users to share resources and data in a cloud environment using ABAC techniques in a distributed manner. The focus is mainly on decentralizing the access policy specifications for the shared data so that each data owner can specify the access policy independent of others. The concept of ontologies and semantic web is introduced in the ABAC paradigm that would help in giving a scalable structure to the attributes and also allow systems having different sets of attributes to communicate and share resources.

Contributors

Agent

Created

Date Created
2014

152506-Thumbnail Image.png

Cluster metrics and temporal coherency in pixel based matrices

Description

In this thesis, the application of pixel-based vertical axes used within parallel coordinate plots is explored in an attempt to improve how existing tools can explain complex multivariate interactions across temporal data. Several promising visualization techniques are combined, such as:

In this thesis, the application of pixel-based vertical axes used within parallel coordinate plots is explored in an attempt to improve how existing tools can explain complex multivariate interactions across temporal data. Several promising visualization techniques are combined, such as: visual boosting to allow for quicker consumption of large data sets, the bond energy algorithm to find finer patterns and anomalies through contrast, multi-dimensional scaling, flow lines, user guided clustering, and row-column ordering. User input is applied on precomputed data sets to provide for real time interaction. General applicability of the techniques are tested against industrial trade, social networking, financial, and sparse data sets of varying dimensionality.

Contributors

Agent

Created

Date Created
2014

152385-Thumbnail Image.png

Detection of advanced bots in smartphones through user profiling

Description

This thesis addresses the ever increasing threat of botnets in the smartphone domain and focuses on the Android platform and the botnets using Online Social Networks (OSNs) as Command and Control (C&C;) medium. With any botnet, C&C; is one of

This thesis addresses the ever increasing threat of botnets in the smartphone domain and focuses on the Android platform and the botnets using Online Social Networks (OSNs) as Command and Control (C&C;) medium. With any botnet, C&C; is one of the components on which the survival of botnet depends. Individual bots use the C&C; channel to receive commands and send the data. This thesis develops active host based approach for identifying the presence of bot based on the anomalies in the usage patterns of the user before and after the bot is installed on the user smartphone and alerting the user to the presence of the bot. A profile is constructed for each user based on the regular web usage patterns (achieved by intercepting the http(s) traffic) and implementing machine learning techniques to continuously learn the user's behavior and changes in the behavior and all the while looking for any anomalies in the user behavior above a threshold which will cause the user to be notified of the anomalous traffic. A prototype bot which uses OSN s as C&C; channel is constructed and used for testing. Users are given smartphones(Nexus 4 and Galaxy Nexus) running Application proxy which intercepts http(s) traffic and relay it to a server which uses the traffic and constructs the model for a particular user and look for any signs of anomalies. This approach lays the groundwork for the future host-based counter measures for smartphone botnets using OSN s as C&C; channel.

Contributors

Agent

Created

Date Created
2013

152388-Thumbnail Image.png

Chip level implementation techniques for radiation hardened microprocessors

Description

Microprocessors are the processing heart of any digital system and are central to all the technological advancements of the age including space exploration and monitoring. The demands of space exploration require a special class of microprocessors called radiation hardened microprocessors

Microprocessors are the processing heart of any digital system and are central to all the technological advancements of the age including space exploration and monitoring. The demands of space exploration require a special class of microprocessors called radiation hardened microprocessors which are less susceptible to radiation present outside the earth's atmosphere, in other words their functioning is not disrupted even in presence of disruptive radiation. The presence of these particles forces the designers to come up with design techniques at circuit and chip levels to alleviate the errors which can be encountered in the functioning of microprocessors. Microprocessor evolution has been very rapid in terms of performance but the same cannot be said about its rad-hard counterpart. With the total data processing capability overall increasing rapidly, the clear lack of performance of the processors manifests as a bottleneck in any processing system. To design high performance rad-hard microprocessors designers have to overcome difficult design problems at various design stages i.e. Architecture, Synthesis, Floorplanning, Optimization, routing and analysis all the while maintaining circuit radiation hardness. The reference design `HERMES' is targeted at 90nm IBM G process and is expected to reach 500Mhz which is twice as fast any processor currently available. Chapter 1 talks about the mechanisms of radiation effects which cause upsets and degradation to the functioning of digital circuits. Chapter 2 gives a brief description of the components which are used in the design and are part of the consistent efforts at ASUVLSI lab culminating in this chip level implementation of the design. Chapter 3 explains the basic digital design ASIC flow and the changes made to it leading to a rad-hard specific ASIC flow used in implementing this chip. Chapter 4 talks about the triple mode redundant (TMR) specific flow which is used in the block implementation, delineating the challenges faced and the solutions proposed to make the flow work. Chapter 5 explains the challenges faced and solutions arrived at while using the top-level flow described in chapter 3. Chapter 6 puts together the results and analyzes the design in terms of basic integrated circuit design constraints.

Contributors

Agent

Created

Date Created
2013

152300-Thumbnail Image.png

Combining thickness information with surface tensor-based morphometry for the 3D statistical analysis of the corpus callosum

Description

In blindness research, the corpus callosum (CC) is the most frequently studied sub-cortical structure, due to its important involvement in visual processing. While most callosal analyses from brain structural magnetic resonance images (MRI) are limited to the 2D mid-sagittal slice,

In blindness research, the corpus callosum (CC) is the most frequently studied sub-cortical structure, due to its important involvement in visual processing. While most callosal analyses from brain structural magnetic resonance images (MRI) are limited to the 2D mid-sagittal slice, we propose a novel framework to capture a complete set of 3D morphological differences in the corpus callosum between two groups of subjects. The CCs are segmented from whole brain T1-weighted MRI and modeled as 3D tetrahedral meshes. The callosal surface is divided into superior and inferior patches on which we compute a volumetric harmonic field by solving the Laplace's equation with Dirichlet boundary conditions. We adopt a refined tetrahedral mesh to compute the Laplacian operator, so our computation can achieve sub-voxel accuracy. Thickness is estimated by tracing the streamlines in the harmonic field. We combine areal changes found using surface tensor-based morphometry and thickness information into a vector at each vertex to be used as a metric for the statistical analysis. Group differences are assessed on this combined measure through Hotelling's T2 test. The method is applied to statistically compare three groups consisting of: congenitally blind (CB), late blind (LB; onset > 8 years old) and sighted (SC) subjects. Our results reveal significant differences in several regions of the CC between both blind groups and the sighted groups; and to a lesser extent between the LB and CB groups. These results demonstrate the crucial role of visual deprivation during the developmental period in reshaping the structural architecture of the CC.

Contributors

Agent

Created

Date Created
2013

152302-Thumbnail Image.png

Thermal aware scheduling in hadoop map reduce framework

Description

The energy consumption of data centers is increasing steadily along with the associ- ated power-density. Approximately half of such energy consumption is attributed to the cooling energy, as a result of which reducing cooling energy along with reducing servers energy

The energy consumption of data centers is increasing steadily along with the associ- ated power-density. Approximately half of such energy consumption is attributed to the cooling energy, as a result of which reducing cooling energy along with reducing servers energy consumption in data centers is becoming imperative so as to achieve greening of the data centers. This thesis deals with cooling energy management in data centers running data-processing frameworks. In particular, we propose ther- mal aware scheduling for MapReduce framework and its Hadoop implementation to reduce cooling energy in data centers. Data-processing frameworks run many low- priority batch processing jobs, such as background log analysis, that do not have strict completion time requirements; they can be delayed by a bounded amount of time. Cooling energy savings are possible by being able to temporally spread the workload, and assign it to the computing equipments which reduce the heat recirculation in data center room and therefore the load on the cooling systems. We implement our scheme in Hadoop and performs some experiments using both CPU-intensive and I/O-intensive workload benchmarks in order to evaluate the efficiency of our scheme. The evaluation results highlight that our thermal aware scheduling reduces hot-spots and makes uniform temperature distribution within the data center possible. Sum- marizing the contribution, we incorporated thermal awareness in Hadoop MapReduce framework by enhancing the native scheduler to make it thermally aware, compare the Thermal Aware Scheduler(TAS) with the Hadoop scheduler (FCFS) by running PageRank and TeraSort benchmarks in the BlueTool data center of Impact lab and show that there is reduction in peak temperature and decrease in cooling power using TAS over FCFS scheduler.

Contributors

Agent

Created

Date Created
2013

151718-Thumbnail Image.png

RAProp: ranking tweets by exploiting the tweet/user/web ecosystem

Description

The increasing popularity of Twitter renders improved trustworthiness and relevance assessment of tweets much more important for search. However, given the limitations on the size of tweets, it is hard to extract measures for ranking from the tweet's content alone.

The increasing popularity of Twitter renders improved trustworthiness and relevance assessment of tweets much more important for search. However, given the limitations on the size of tweets, it is hard to extract measures for ranking from the tweet's content alone. I propose a method of ranking tweets by generating a reputation score for each tweet that is based not just on content, but also additional information from the Twitter ecosystem that consists of users, tweets, and the web pages that tweets link to. This information is obtained by modeling the Twitter ecosystem as a three-layer graph. The reputation score is used to power two novel methods of ranking tweets by propagating the reputation over an agreement graph based on tweets' content similarity. Additionally, I show how the agreement graph helps counter tweet spam. An evaluation of my method on 16~million tweets from the TREC 2011 Microblog Dataset shows that it doubles the precision over baseline Twitter Search and achieves higher precision than current state of the art method. I present a detailed internal empirical evaluation of RAProp in comparison to several alternative approaches proposed by me, as well as external evaluation in comparison to the current state of the art method.

Contributors

Agent

Created

Date Created
2013

152310-Thumbnail Image.png

We built this town: raising activity awareness through the workplace using gamification

Description

The wide adoption and continued advancement of information and communications technologies (ICT) have made it easier than ever for individuals and groups to stay connected over long distances. These advances have greatly contributed in dramatically changing the dynamics of the

The wide adoption and continued advancement of information and communications technologies (ICT) have made it easier than ever for individuals and groups to stay connected over long distances. These advances have greatly contributed in dramatically changing the dynamics of the modern day workplace to the point where it is now commonplace to see large, distributed multidisciplinary teams working together on a daily basis. However, in this environment, motivating, understanding, and valuing the diverse contributions of individual workers in collaborative enterprises becomes challenging. To address these issues, this thesis presents the goals, design, and implementation of Taskville, a distributed workplace game played by teams on large, public displays. Taskville uses a city building metaphor to represent the completion of individual and group tasks within an organization. Promising results from two usability studies and two longitudinal studies at a multidisciplinary school demonstrate that Taskville supports personal reflection and improves team awareness through an engaging workplace activity.

Contributors

Agent

Created

Date Created
2013