Matching Items (55)

Filtering by

Clear all filters

149501-Thumbnail Image.png

Detecting sybil nodes in static and dynamic networks

Description

Peer-to-peer systems are known to be vulnerable to the Sybil attack. The lack of a central authority allows a malicious user to create many fake identities (called Sybil nodes) pretending to be independent honest nodes. The goal of the malicious

Peer-to-peer systems are known to be vulnerable to the Sybil attack. The lack of a central authority allows a malicious user to create many fake identities (called Sybil nodes) pretending to be independent honest nodes. The goal of the malicious user is to influence the system on his/her behalf. In order to detect the Sybil nodes and prevent the attack, a reputation system is used for the nodes, built through observing its interactions with its peers. The construction makes every node a part of a distributed authority that keeps records on the reputation and behavior of the nodes. Records of interactions between nodes are broadcast by the interacting nodes and honest reporting proves to be a Nash Equilibrium for correct (non-Sybil) nodes. In this research is argued that in realistic communication schedule scenarios, simple graph-theoretic queries such as the computation of Strongly Connected Components and Densest Subgraphs, help in exposing those nodes most likely to be Sybil, which are then proved to be Sybil or not through a direct test executed by some peers.

Contributors

Agent

Created

Date Created
2010

152500-Thumbnail Image.png

Resource allocation in communication and social networks

Description

As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking

As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network environment. This dissertation focuses on two different kinds of networks - communication and social, and studies resource allocation problems in these networks. The study on communication networks is further divided into different networking technologies - wired and wireless, optical and mobile, airborne and terrestrial. Since nodes in an airborne network (AN) are heterogeneous and mobile, the design of a reliable and robust AN is highly complex. The dissertation studies connectivity and fault-tolerance issues in ANs and proposes algorithms to compute the critical transmission range in fault free, faulty and delay tolerant scenarios. Just as in the case of ANs, power optimization and fault tolerance are important issues in wireless sensor networks (WSN). In a WSN, a tree structure is often used to deliver sensor data to a sink node. In a tree, failure of a node may disconnect the tree. The dissertation investigates the problem of enhancing the fault tolerance capability of data gathering trees in WSN. The advent of OFDM technology provides an opportunity for efficient resource utilization in optical networks and also introduces a set of novel problems, such as routing and spectrum allocation (RSA) problem. This dissertation proves that RSA problem is NP-complete even when the network topology is a chain, and proposes approximation algorithms. In the domain of social networks, the focus of this dissertation is study of influence propagation in presence of active adversaries. In a social network multiple vendors may attempt to influence the nodes in a competitive fashion. This dissertation investigates the scenario where the first vendor has already chosen a set of nodes and the second vendor, with the knowledge of the choice of the first, attempts to identify a smallest set of nodes so that after the influence propagation, the second vendor's market share is larger than the first.

Contributors

Agent

Created

Date Created
2014

152385-Thumbnail Image.png

Detection of advanced bots in smartphones through user profiling

Description

This thesis addresses the ever increasing threat of botnets in the smartphone domain and focuses on the Android platform and the botnets using Online Social Networks (OSNs) as Command and Control (C&C;) medium. With any botnet, C&C; is one of

This thesis addresses the ever increasing threat of botnets in the smartphone domain and focuses on the Android platform and the botnets using Online Social Networks (OSNs) as Command and Control (C&C;) medium. With any botnet, C&C; is one of the components on which the survival of botnet depends. Individual bots use the C&C; channel to receive commands and send the data. This thesis develops active host based approach for identifying the presence of bot based on the anomalies in the usage patterns of the user before and after the bot is installed on the user smartphone and alerting the user to the presence of the bot. A profile is constructed for each user based on the regular web usage patterns (achieved by intercepting the http(s) traffic) and implementing machine learning techniques to continuously learn the user's behavior and changes in the behavior and all the while looking for any anomalies in the user behavior above a threshold which will cause the user to be notified of the anomalous traffic. A prototype bot which uses OSN s as C&C; channel is constructed and used for testing. Users are given smartphones(Nexus 4 and Galaxy Nexus) running Application proxy which intercepts http(s) traffic and relay it to a server which uses the traffic and constructs the model for a particular user and look for any signs of anomalies. This approach lays the groundwork for the future host-based counter measures for smartphone botnets using OSN s as C&C; channel.

Contributors

Agent

Created

Date Created
2013

152082-Thumbnail Image.png

Coping with selfish behavior in networks using game theory

Description

While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and

While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and selfishly, and maybe cooperate with a small group of other entities only when this form of coalition yields a better return. The interaction among multiple independent decision-makers necessitates the use of game theory, including economic notions related to markets and incentives. In this dissertation, we are interested in modeling, analyzing, addressing network problems caused by the selfish behavior of network entities. First, we study how the selfish behavior of network entities affects the system performance while users are competing for limited resource. For this resource allocation domain, we aim to study the selfish routing problem in networks with fair queuing on links, the relay assignment problem in cooperative networks, and the channel allocation problem in wireless networks. Another important aspect of this dissertation is the study of designing efficient mechanisms to incentivize network entities to achieve certain system objective. For this incentive mechanism domain, we aim to motivate wireless devices to serve as relays for cooperative communication, and to recruit smartphones for crowdsourcing. In addition, we apply different game theoretic approaches to problems in security and privacy domain. For this domain, we aim to analyze how a user could defend against a smart jammer, who can quickly learn about the user's transmission power. We also design mechanisms to encourage mobile phone users to participate in location privacy protection, in order to achieve k-anonymity.

Contributors

Agent

Created

Date Created
2013

153872-Thumbnail Image.png

Making thin data thick: user behavior analysis with minimum information

Description

With the rise of social media, user-generated content has become available at an unprecedented scale. On Twitter, 1 billion tweets are posted every 5 days and on Facebook, 20 million links are shared every 20 minutes. These massive collections of

With the rise of social media, user-generated content has become available at an unprecedented scale. On Twitter, 1 billion tweets are posted every 5 days and on Facebook, 20 million links are shared every 20 minutes. These massive collections of user-generated content have introduced the human behavior's big-data.

This big data has brought about countless opportunities for analyzing human behavior at scale. However, is this data enough? Unfortunately, the data available at the individual-level is limited for most users. This limited individual-level data is often referred to as thin data. Hence, researchers face a big-data paradox, where this big-data is a large collection of mostly limited individual-level information. Researchers are often constrained to derive meaningful insights regarding online user behavior with this limited information. Simply put, they have to make thin data thick.

In this dissertation, how human behavior's thin data can be made thick is investigated. The chief objective of this dissertation is to demonstrate how traces of human behavior can be efficiently gleaned from the, often limited, individual-level information; hence, introducing an all-inclusive user behavior analysis methodology that considers social media users with different levels of information availability. To that end, the absolute minimum information in terms of both link or content data that is available for any social media user is determined. Utilizing only minimum information in different applications on social media such as prediction or recommendation tasks allows for solutions that are (1) generalizable to all social media users and that are (2) easy to implement. However, are applications that employ only minimum information as effective or comparable to applications that use more information?

In this dissertation, it is shown that common research challenges such as detecting malicious users or friend recommendation (i.e., link prediction) can be effectively performed using only minimum information. More importantly, it is demonstrated that unique user identification can be achieved using minimum information. Theoretical boundaries of unique user identification are obtained by introducing social signatures. Social signatures allow for user identification in any large-scale network on social media. The results on single-site user identification are generalized to multiple sites and it is shown how the same user can be uniquely identified across multiple sites using only minimum link or content information.

The findings in this dissertation allows finding the same user across multiple sites, which in turn has multiple implications. In particular, by identifying the same users across sites, (1) patterns that users exhibit across sites are identified, (2) how user behavior varies across sites is determined, and (3) activities that are observed only across sites are identified and studied.

Contributors

Agent

Created

Date Created
2015

153909-Thumbnail Image.png

SDN-based proactive defense mechanism in a cloud system

Description

Cloud computing is known as a new and powerful computing paradigm. This new generation of network computing model delivers both software and hardware as on-demand resources and various services over the Internet. However, the security concerns prevent users from adopting

Cloud computing is known as a new and powerful computing paradigm. This new generation of network computing model delivers both software and hardware as on-demand resources and various services over the Internet. However, the security concerns prevent users from adopting the cloud-based solutions to fulfill the IT requirement for many business critical computing. Due to the resource-sharing and multi-tenant nature of cloud-based solutions, cloud security is especially the most concern in the Infrastructure as a Service (IaaS). It has been attracting a lot of research and development effort in the past few years.

Virtualization is the main technology of cloud computing to enable multi-tenancy.

Computing power, storage, and network are all virtualizable to be shared in an IaaS system. This important technology makes abstract infrastructure and resources available to users as isolated virtual machines (VMs) and virtual networks (VNs). However, it also increases vulnerabilities and possible attack surfaces in the system, since all users in a cloud share these resources with others or even the attackers. The promising protection mechanism is required to ensure strong isolation, mediated sharing, and secure communications between VMs. Technologies for detecting anomalous traffic and protecting normal traffic in VNs are also needed. Therefore, how to secure and protect the private traffic in VNs and how to prevent the malicious traffic from shared resources are major security research challenges in a cloud system.

This dissertation proposes four novel frameworks to address challenges mentioned above. The first work is a new multi-phase distributed vulnerability, measurement, and countermeasure selection mechanism based on the attack graph analytical model. The second work is a hybrid intrusion detection and prevention system to protect VN and VM using virtual machines introspection (VMI) and software defined networking (SDN) technologies. The third work further improves the previous works by introducing a VM profiler and VM Security Index (VSI) to keep track the security status of each VM and suggest the optimal countermeasure to mitigate potential threats. The final work is a SDN-based proactive defense mechanism for a cloud system using a reconfiguration model and moving target defense approaches to actively and dynamically change the virtual network configuration of a cloud system.

Contributors

Agent

Created

Date Created
2015

153094-Thumbnail Image.png

Privacy preserving controls for Android applications

Description

Android is currently the most widely used mobile operating system. The permission model in Android governs the resource access privileges of applications. The permission model however is amenable to various attacks, including re-delegation attacks, background snooping attacks and disclosure of

Android is currently the most widely used mobile operating system. The permission model in Android governs the resource access privileges of applications. The permission model however is amenable to various attacks, including re-delegation attacks, background snooping attacks and disclosure of private information. This thesis is aimed at understanding, analyzing and performing forensics on application behavior. This research sheds light on several security aspects, including the use of inter-process communications (IPC) to perform permission re-delegation attacks.

Android permission system is more of app-driven rather than user controlled, which means it is the applications that specify their permission requirement and the only thing which the user can do is choose not to install a particular application based on the requirements. Given the all or nothing choice, users succumb to pressures and needs to accept permissions requested. This thesis proposes a couple of ways for providing the users finer grained control of application privileges. The same methods can be used to evade the Permission Re-delegation attack.

This thesis also proposes and implements a novel methodology in Android that can be used to control the access privileges of an Android application, taking into consideration the context of the running application. This application-context based permission usage is further used to analyze a set of sample applications. We found the evidence of applications spoofing or divulging user sensitive information such as location information, contact information, phone id and numbers, in the background. Such activities can be used to track users for a variety of privacy-intrusive purposes. We have developed implementations that minimize several forms of privacy leaks that are routinely done by stock applications.

Contributors

Agent

Created

Date Created
2014

154329-Thumbnail Image.png

Privacy-preserving mobile crowd sensing

Description

The presence of a rich set of embedded sensors on mobile devices has been fuelling various sensing applications regarding the activities of individuals and their surrounding environment, and these ubiquitous sensing-capable mobile devices are pushing the new paradigm of Mobile

The presence of a rich set of embedded sensors on mobile devices has been fuelling various sensing applications regarding the activities of individuals and their surrounding environment, and these ubiquitous sensing-capable mobile devices are pushing the new paradigm of Mobile Crowd Sensing (MCS) from concept to reality. MCS aims to outsource sensing data collection to mobile users and it could revolutionize the traditional ways of sensing data collection and processing. In the meantime, cloud computing provides cloud-backed infrastructures for mobile devices to provision their capabilities with network access. With enormous computational and storage resources along with sufficient bandwidth, it functions as the hub to handle the sensing service requests from sensing service consumers and coordinate sensing task assignment among eligible mobile users to reach a desired quality of sensing service. This paper studies the problem of sensing task assignment to mobile device owners with specific spatio-temporal traits to minimize the cost and maximize the utility in MCS while adhering to QoS constraints. Greedy approaches and hybrid solutions combined with bee algorithms are explored to address the problem.

Moreover, the privacy concerns arise with the widespread deployment of MCS from both the data contributors and the sensing service consumers. The uploaded sensing data, especially those tagged with spatio-temporal information, will disclose the personal information of the data contributors. In addition, the sensing service requests can reveal the personal interests of service consumers. To address the privacy issues, this paper constructs a new framework named Privacy-Preserving Mobile Crowd Sensing (PP-MCS) to leverage the sensing capabilities of ubiquitous mobile devices and cloud infrastructures. PP-MCS has a distributed architecture without relying on trusted third parties for privacy-preservation. In PP-MCS, the sensing service consumers can retrieve data without revealing the real data contributors. Besides, the individual sensing records can be compared against the aggregation result while keeping the values of sensing records unknown, and the k-nearest neighbors could be approximately identified without privacy leaks. As such, the privacy of the data contributors and the sensing service consumers can be protected to the greatest extent possible.

Contributors

Agent

Created

Date Created
2016

150953-Thumbnail Image.png

Adapting sensing and transmission times to improve secondary user throughput in cognitive radio ad hoc networks

Description

Cognitive Radios (CR) are designed to dynamically reconfigure their transmission and/or reception parameters to utilize the bandwidth efficiently. With a rapidly fluctuating radio environment, spectrum management becomes crucial for cognitive radios. In a Cognitive Radio Ad Hoc Network (CRAHN) setting,

Cognitive Radios (CR) are designed to dynamically reconfigure their transmission and/or reception parameters to utilize the bandwidth efficiently. With a rapidly fluctuating radio environment, spectrum management becomes crucial for cognitive radios. In a Cognitive Radio Ad Hoc Network (CRAHN) setting, the sensing and transmission times of the cognitive radio play a more important role because of the decentralized nature of the network. They have a direct impact on the throughput. Due to the tradeoff between throughput and the sensing time, finding optimal values for sensing time and transmission time is difficult. In this thesis, a method is proposed to improve the throughput of a CRAHN by dynamically changing the sensing and transmission times. To simulate the CRAHN setting, ns-2, the network simulator with an extension for CRAHN is used. The CRAHN extension module implements the required Primary User (PU) and Secondary User (SU) and other CR functionalities to simulate a realistic CRAHN scenario. First, this work presents a detailed analysis of various CR parameters, their interactions, their individual contributions to the throughput to understand how they affect the transmissions in the network. Based on the results of this analysis, changes to the system model in the CRAHN extension are proposed. Instantaneous throughput of the network is introduced in the new model, which helps to determine how the parameters should adapt based on the current throughput. Along with instantaneous throughput, checks are done for interference with the PUs and their transmission power, before modifying these CR parameters. Simulation results demonstrate that the throughput of the CRAHN with the adaptive sensing and transmission times is significantly higher as compared to that of non-adaptive parameters.

Contributors

Agent

Created

Date Created
2012

151945-Thumbnail Image.png

System-level synthesis of dataplane subsystems for MPSoCs

Description

In recent years we have witnessed a shift towards multi-processor system-on-chips (MPSoCs) to address the demands of embedded devices (such as cell phones, GPS devices, luxury car features, etc.). Highly optimized MPSoCs are well-suited to tackle the complex application demands

In recent years we have witnessed a shift towards multi-processor system-on-chips (MPSoCs) to address the demands of embedded devices (such as cell phones, GPS devices, luxury car features, etc.). Highly optimized MPSoCs are well-suited to tackle the complex application demands desired by the end user customer. These MPSoCs incorporate a constellation of heterogeneous processing elements (PEs) (general purpose PEs and application-specific integrated circuits (ASICS)). A typical MPSoC will be composed of a application processor, such as an ARM Coretex-A9 with cache coherent memory hierarchy, and several application sub-systems. Each of these sub-systems are composed of highly optimized instruction processors, graphics/DSP processors, and custom hardware accelerators. Typically, these sub-systems utilize scratchpad memories (SPM) rather than support cache coherency. The overall architecture is an integration of the various sub-systems through a high bandwidth system-level interconnect (such as a Network-on-Chip (NoC)). The shift to MPSoCs has been fueled by three major factors: demand for high performance, the use of component libraries, and short design turn around time. As customers continue to desire more and more complex applications on their embedded devices the performance demand for these devices continues to increase. Designers have turned to using MPSoCs to address this demand. By using pre-made IP libraries designers can quickly piece together a MPSoC that will meet the application demands of the end user with minimal time spent designing new hardware. Additionally, the use of MPSoCs allows designers to generate new devices very quickly and thus reducing the time to market. In this work, a complete MPSoC synthesis design flow is presented. We first present a technique \cite{leary1_intro} to address the synthesis of the interconnect architecture (particularly Network-on-Chip (NoC)). We then address the synthesis of the memory architecture of a MPSoC sub-system \cite{leary2_intro}. Lastly, we present a co-synthesis technique to generate the functional and memory architectures simultaneously. The validity and quality of each synthesis technique is demonstrated through extensive experimentation.

Contributors

Agent

Created

Date Created
2013