Matching Items (149)
Filtering by

Clear all filters

153487-Thumbnail Image.png
Description
Internet browsers are today capable of warning internet users of a potential phishing attack. Browsers identify these websites by referring to blacklists of reported phishing websites maintained by trusted organizations like Google, Phishtank etc. On identifying a Unified Resource Locator (URL) requested by a user as a reported phishing URL,

Internet browsers are today capable of warning internet users of a potential phishing attack. Browsers identify these websites by referring to blacklists of reported phishing websites maintained by trusted organizations like Google, Phishtank etc. On identifying a Unified Resource Locator (URL) requested by a user as a reported phishing URL, browsers like Mozilla Firefox and Google Chrome display an 'active' warning message in an attempt to stop the user from making a potentially dangerous decision of visiting the website and sharing confidential information like username-password, credit card information, social security number etc.

However, these warnings are not always successful at safeguarding the user from a phishing attack. On several occasions, users ignore these warnings and 'click through' them, eventually landing at the potentially dangerous website and giving away confidential information. Failure to understand the warning, failure to differentiate different types of browser warnings, diminishing trust on browser warnings due to repeated encounter are some of the reasons that make users ignore these warnings. It is important to address these factors in order to eventually improve a user’s reaction to these warnings.

In this thesis, I propose a novel design to improve the effectiveness and reliability of phishing warning messages. This design utilizes the name of the target website that a fake website is mimicking, to display a simple, easy to understand and interactive warning message with the primary objective of keeping the user away from a potentially spoof website.
ContributorsSharma, Satyabrata (Author) / Bazzi, Rida (Thesis advisor) / Walker, Erin (Committee member) / Gaffar, Ashraf (Committee member) / Arizona State University (Publisher)
Created2015
150212-Thumbnail Image.png
Description
This thesis addresses the problem of online schema updates where the goal is to be able to update relational database schemas without reducing the database system's availability. Unlike some other work in this area, this thesis presents an approach which is completely client-driven and does not require specialized database management

This thesis addresses the problem of online schema updates where the goal is to be able to update relational database schemas without reducing the database system's availability. Unlike some other work in this area, this thesis presents an approach which is completely client-driven and does not require specialized database management systems (DBMS). Also, unlike other client-driven work, this approach provides support for a richer set of schema updates including vertical split (normalization), horizontal split, vertical and horizontal merge (union), difference and intersection. The update process automatically generates a runtime update client from a mapping between the old the new schemas. The solution has been validated by testing it on a relatively small database of around 300,000 records per table and less than 1 Gb, but with limited memory buffer size of 24 Mb. This thesis presents the study of the overhead of the update process as a function of the transaction rates and the batch size used to copy data from the old to the new schema. It shows that the overhead introduced is minimal for medium size applications and that the update can be achieved with no more than one minute of downtime.
ContributorsTyagi, Preetika (Author) / Bazzi, Rida (Thesis advisor) / Candan, Kasim S (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2011
150895-Thumbnail Image.png
Description
Broadcast Encryption is the task of cryptographically securing communication in a broadcast environment so that only a dynamically specified subset of subscribers, called the privileged subset, may decrypt the communication. In practical applications, it is desirable for a Broadcast Encryption Scheme (BES) to demonstrate resilience against attacks by colluding, unprivileged

Broadcast Encryption is the task of cryptographically securing communication in a broadcast environment so that only a dynamically specified subset of subscribers, called the privileged subset, may decrypt the communication. In practical applications, it is desirable for a Broadcast Encryption Scheme (BES) to demonstrate resilience against attacks by colluding, unprivileged subscribers. Minimal Perfect Hash Families (PHFs) have been shown to provide a basis for the construction of memory-efficient t-resilient Key Pre-distribution Schemes (KPSs) from multiple instances of 1-resilient KPSs. Using this technique, the task of constructing a large t-resilient BES is reduced to finding a near-minimal PHF of appropriate parameters. While combinatorial and probabilistic constructions exist for minimal PHFs with certain parameters, the complexity of constructing them in general is currently unknown. This thesis introduces a new type of hash family, called a Scattering Hash Family (ScHF), which is designed to allow for the scalable and ingredient-independent design of memory-efficient BESs for large parameters, specifically resilience and total number of subscribers. A general BES construction using ScHFs is shown, which constructs t-resilient KPSs from other KPSs of any resilience ≤w≤t. In addition to demonstrating how ScHFs can be used to produce BESs , this thesis explores several ScHF construction techniques. The initial technique demonstrates a probabilistic, non-constructive proof of existence for ScHFs . This construction is then derandomized into a direct, polynomial time construction of near-minimal ScHFs using the method of conditional expectations. As an alternative approach to direct construction, representing ScHFs as a k-restriction problem allows for the indirect construction of ScHFs via randomized post-optimization. Using the methods defined, ScHFs are constructed and the parameters' effects on solution size are analyzed. For large strengths, constructive techniques lose significant performance, and as such, asymptotic analysis is performed using the non-constructive existential results. This work concludes with an analysis of the benefits and disadvantages of BESs based on the constructed ScHFs. Due to the novel nature of ScHFs, the results of this analysis are used as the foundation for an empirical comparison between ScHF-based and PHF-based BESs . The primary bases of comparison are construction efficiency, key material requirements, and message transmission overhead.
ContributorsO'Brien, Devon James (Author) / Colbourn, Charles J (Thesis advisor) / Bazzi, Rida (Committee member) / Richa, Andrea (Committee member) / Arizona State University (Publisher)
Created2012
154142-Thumbnail Image.png
Description
A load balancer is an essential part of many network systems. A load balancer is capable of dividing and redistributing incoming network traffic to different back end servers, thus improving reliability and performance. Existing load balancing solutions can be classified into two categories: hardware-based or software-based. Hardware-based load balancing systems

A load balancer is an essential part of many network systems. A load balancer is capable of dividing and redistributing incoming network traffic to different back end servers, thus improving reliability and performance. Existing load balancing solutions can be classified into two categories: hardware-based or software-based. Hardware-based load balancing systems are hard to manage and force network administrators to scale up (replacing with more powerful but expensive hardware) when their system can not handle the growing traffic. Software-based solutions have a limitation when dealing with a single large TCP flow. In recent years, with the fast developments of virtualization technology, a new trend of network function virtualization (NFV) is being adopted. Instead of using proprietary hardware, an NFV network infrastructure uses virtual machines running to implement network functions such as load balancers, firewalls, etc. In this thesis, a new load balancing system is designed and evaluated. This system is high performance and flexible. It can fully utilize the bandwidth between a load balancer and back end servers compared to traditional load balancers such as HAProxy. The experimental results show that using this NFV load balancer could have $n$ ($n$ is the number of back end servers) times better performance than HAProxy. Also, an extract, transform and load (ETL) application was implemented to demonstrate that this load balancer can shorten data load time. The experiment shows that when loading a large data set (18.3GB), our load balancer needs only 28\% less time than traditional load balancer.
ContributorsWu, Jinxuan (Author) / Syrotiuk, Violet R. (Thesis advisor) / Bazzi, Rida (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2015
157028-Thumbnail Image.png
Description
Due to large data resources generated by online educational applications, Educational Data Mining (EDM) has improved learning effects in different ways: Students Visualization, Recommendations for students, Students Modeling, Grouping Students, etc. A lot of programming assignments have the features like automating submissions, examining the test cases to verify the correctness,

Due to large data resources generated by online educational applications, Educational Data Mining (EDM) has improved learning effects in different ways: Students Visualization, Recommendations for students, Students Modeling, Grouping Students, etc. A lot of programming assignments have the features like automating submissions, examining the test cases to verify the correctness, but limited studies compared different statistical techniques with latest frameworks, and interpreted models in a unified approach.

In this thesis, several data mining algorithms have been applied to analyze students’ code assignment submission data from a real classroom study. The goal of this work is to explore

and predict students’ performances. Multiple machine learning models and the model accuracy were evaluated based on the Shapley Additive Explanation.

The Cross-Validation shows the Gradient Boosting Decision Tree has the best precision 85.93% with average 82.90%. Features like Component grade, Due Date, Submission Times have higher impact than others. Baseline model received lower precision due to lack of non-linear fitting.
ContributorsTian, Wenbo (Author) / Hsiao, Ihan (Thesis advisor) / Bazzi, Rida (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2019
131525-Thumbnail Image.png
Description
The original version of Helix, the one I pitched when first deciding to make a video game
for my thesis, is an action-platformer, with the intent of metroidvania-style progression
and an interconnected world map.

The current version of Helix is a turn based role-playing game, with the intent of roguelike
gameplay and a dark

The original version of Helix, the one I pitched when first deciding to make a video game
for my thesis, is an action-platformer, with the intent of metroidvania-style progression
and an interconnected world map.

The current version of Helix is a turn based role-playing game, with the intent of roguelike
gameplay and a dark fantasy theme. We will first be exploring the challenges that came
with programming my own game - not quite from scratch, but also without a prebuilt
engine - then transition into game design and how Helix has evolved from its original form
to what we see today.
ContributorsDiscipulo, Isaiah K (Author) / Meuth, Ryan (Thesis director) / Kobayashi, Yoshihiro (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131529-Thumbnail Image.png
Description
RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to

RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to properly dispose of the material. Some searches will show locations of facilities near users that collect certain materials and dispose of the materials properly. This is a full stack software project that explores open source software and APIs, UI/UX design, and iOS development.
ContributorsTran, Nikki (Author) / Ganesh, Tirupalavanam (Thesis director) / Meuth, Ryan (Committee member) / Watts College of Public Service & Community Solut (Contributor) / Department of Information Systems (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
134157-Thumbnail Image.png
Description
This paper details the specification and implementation of a single-machine blockchain simulator. It also includes a brief introduction on the history & underlying concepts of blockchain, with explanations on features such as decentralization, openness, trustlessness, and consensus. The introduction features a brief overview of public interest and current implementations of

This paper details the specification and implementation of a single-machine blockchain simulator. It also includes a brief introduction on the history & underlying concepts of blockchain, with explanations on features such as decentralization, openness, trustlessness, and consensus. The introduction features a brief overview of public interest and current implementations of blockchain before stating potential use cases for blockchain simulation software. The paper then gives a brief literature review of blockchain's role, both as a disruptive technology and a foundational technology. The literature review also addresses the potential and difficulties regarding the use of blockchain in Internet of Things (IoT) networks, and also describes the limitations of blockchain in general regarding computational intensity, storage capacity, and network architecture. Next, the paper gives the specification for a generic blockchain structure, with summaries on the behaviors and purposes of transactions, blocks, nodes, miners, public & private key cryptography, signature validation, and hashing. Finally, the author gives an overview of their specific implementation of the blockchain using C/C++ and OpenSSL. The overview includes a brief description of all the classes and data structures involved in the implementation, including their function and behavior. While the implementation meets the requirements set forward in the specification, the results are more qualitative and intuitive, as time constraints did not allow for quantitative measurements of the network simulation. The paper concludes by discussing potential applications for the simulator, and the possibility for future hardware implementations of blockchain.
ContributorsRauschenbach, Timothy Rex (Author) / Vrudhula, Sarma (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134286-Thumbnail Image.png
Description
Many researchers aspire to create robotics systems that assist humans in common office tasks, especially by taking over delivery and messaging tasks. For meaningful interactions to take place, a mobile robot must be able to identify the humans it interacts with and communicate successfully with them. It must also be

Many researchers aspire to create robotics systems that assist humans in common office tasks, especially by taking over delivery and messaging tasks. For meaningful interactions to take place, a mobile robot must be able to identify the humans it interacts with and communicate successfully with them. It must also be able to successfully navigate the office environment. While mobile robots are well suited for navigating and interacting with elements inside a deterministic office environment, attempting to interact with human beings in an office environment remains a challenge due to the limits on the amount of cost-efficient compute power onboard the robot. In this work, I propose the use of remote cloud services to offload intensive interaction tasks. I detail the interactions required in an office environment and discuss the challenges faced when implementing a human-robot interaction platform in a stochastic office environment. I also experiment with cloud services for facial recognition, speech recognition, and environment navigation and discuss my results. As part of my thesis, I have implemented a human-robot interaction system utilizing cloud APIs into a mobile robot, enabling it to navigate the office environment, identify humans within the environment, and communicate with these humans.
Created2017-05
134293-Thumbnail Image.png
Description
Lie detection is used prominently in contemporary society for many purposes such as for pre-employment screenings, granting security clearances, and determining if criminals or potential subjects may or may not be lying, but by no means is not limited to that scope. However, lie detection has been criticized for being

Lie detection is used prominently in contemporary society for many purposes such as for pre-employment screenings, granting security clearances, and determining if criminals or potential subjects may or may not be lying, but by no means is not limited to that scope. However, lie detection has been criticized for being subjective, unreliable, inaccurate, and susceptible to deliberate manipulation. Furthermore, critics also believe that the administrator of the test also influences the outcome as well. As a result, the polygraph machine, the contemporary device used for lie detection, has come under scrutiny when used as evidence in the courts. The purpose of this study is to use three entirely different tools and concepts to determine whether eye tracking systems, electroencephalogram (EEG), and Facial Expression Emotion Analysis (FACET) are reliable tools for lie detection. This study found that certain constructs such as where the left eye is looking at in regard to its usual position and engagement levels in eye tracking and EEG respectively could distinguish between truths and lies. However, the FACET proved the most reliable tool out of the three by providing not just one distinguishing variable but seven, all related to emotions derived from movements in the facial muscles during the present study. The emotions associated with the FACET that were documented to possess the ability to distinguish between truthful and lying responses were joy, anger, fear, confusion, and frustration. In addition, an overall measure of the subject's neutral and positive emotional expression were found to be distinctive factors. The implications of this study and future directions are discussed.
ContributorsSeto, Raymond Hua (Author) / Atkinson, Robert (Thesis director) / Runger, George (Committee member) / W. P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05