Matching Items (120)

Filtering by

Clear all filters

Description

Standardization is sorely lacking in the field of musical machine learning. This thesis project endeavors to contribute to this standardization by training three machine learning models on the same dataset and comparing them using the same metrics. The music-specific metrics utilized provide more relevant information for diagnosing the shortcomings of

Standardization is sorely lacking in the field of musical machine learning. This thesis project endeavors to contribute to this standardization by training three machine learning models on the same dataset and comparing them using the same metrics. The music-specific metrics utilized provide more relevant information for diagnosing the shortcomings of each model.

ContributorsHilliker, Jacob (Author) / Li, Baoxin (Thesis director) / Libman, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2021-12
Description

Spatial audio can be especially useful for directing human attention. However, delivering spatial audio through speakers, rather than headphones that deliver audio directly to the ears, produces the issue of crosstalk, where sounds from each of the two speakers reach the opposite ear, inhibiting the spatialized effect. A research team

Spatial audio can be especially useful for directing human attention. However, delivering spatial audio through speakers, rather than headphones that deliver audio directly to the ears, produces the issue of crosstalk, where sounds from each of the two speakers reach the opposite ear, inhibiting the spatialized effect. A research team at Meteor Studio has developed an algorithm called Xblock that solves this issue using a crosstalk cancellation technique. This thesis project expands upon the existing Xblock IoT system by providing a way to test the accuracy of the directionality of sounds generated with spatial audio. More specifically, the objective is to determine whether the usage of Xblock with smart speakers can provide generalized audio localization, which refers to the ability to detect a general direction of where a sound might be coming from. This project also expands upon the existing Xblock technique to integrate voice commands, where users can verbalize the name of a lost item using the phrase, “Find [item]”, and the IoT system will use spatial audio to guide them to it.

ContributorsSong, Lucy (Author) / LiKamWa, Robert (Thesis director) / Berisha, Visar (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
164825-Thumbnail Image.png
Description

Spatial audio can be especially useful for directing human attention. However, delivering spatial audio through speakers, rather than headphones that deliver audio directly to the ears, produces the issue of crosstalk, where sounds from each of the two speakers reach the opposite ear, inhibiting the spatialized effect. A research team

Spatial audio can be especially useful for directing human attention. However, delivering spatial audio through speakers, rather than headphones that deliver audio directly to the ears, produces the issue of crosstalk, where sounds from each of the two speakers reach the opposite ear, inhibiting the spatialized effect. A research team at Meteor Studio has developed an algorithm called Xblock that solves this issue using a crosstalk cancellation technique. This thesis project expands upon the existing Xblock IoT system by providing a way to test the accuracy of the directionality of sounds generated with spatial audio. More specifically, the objective is to determine whether the usage of Xblock with smart speakers can provide generalized audio localization, which refers to the ability to detect a general direction of where a sound might be coming from. This project also expands upon the existing Xblock technique to integrate voice commands, where users can verbalize the name of a lost item using the phrase, “Find [item]”, and the IoT system will use spatial audio to guide them to it.

ContributorsSong, Lucy (Author) / LiKamWa, Robert (Thesis director) / Berisha, Visar (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
164826-Thumbnail Image.jpg
Description

Spatial audio can be especially useful for directing human attention. However, delivering spatial audio through speakers, rather than headphones that deliver audio directly to the ears, produces the issue of crosstalk, where sounds from each of the two speakers reach the opposite ear, inhibiting the spatialized effect. A research team

Spatial audio can be especially useful for directing human attention. However, delivering spatial audio through speakers, rather than headphones that deliver audio directly to the ears, produces the issue of crosstalk, where sounds from each of the two speakers reach the opposite ear, inhibiting the spatialized effect. A research team at Meteor Studio has developed an algorithm called Xblock that solves this issue using a crosstalk cancellation technique. This thesis project expands upon the existing Xblock IoT system by providing a way to test the accuracy of the directionality of sounds generated with spatial audio. More specifically, the objective is to determine whether the usage of Xblock with smart speakers can provide generalized audio localization, which refers to the ability to detect a general direction of where a sound might be coming from. This project also expands upon the existing Xblock technique to integrate voice commands, where users can verbalize the name of a lost item using the phrase, “Find [item]”, and the IoT system will use spatial audio to guide them to it.

ContributorsSong, Lucy (Author) / LiKamWa, Robert (Thesis director) / Berisha, Visar (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description

The process of learning a new skill can be time consuming and difficult for both the teacher and the student, especially when it comes to computer modeling. With so many terms and functionalities to familiarize oneself with, this task can be overwhelming to even the most knowledgeable student. The purpose

The process of learning a new skill can be time consuming and difficult for both the teacher and the student, especially when it comes to computer modeling. With so many terms and functionalities to familiarize oneself with, this task can be overwhelming to even the most knowledgeable student. The purpose of this paper is to describe the methodology used in the creation of a new set of curricula for those attempting to learn how to use the Dynamic Traffic Simulation Package with Multi-Resolution Modeling. The current DLSim curriculum currently relates information via high-concept terms and complicated graphics. The information in this paper aims to provide a streamlined set of curricula for new users of DLSim, including lesson plans and improved infographics.

ContributorsMills, Alexander (Author) / Zhou, Xuesong (Thesis director) / Chen, Yinong (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
164914-Thumbnail Image.png
Description

The process of learning a new skill can be time consuming and difficult for both the teacher and the student, especially when it comes to computer modeling. With so many terms and functionalities to familiarize oneself with, this task can be overwhelming to even the most knowledgeable student. The purpose

The process of learning a new skill can be time consuming and difficult for both the teacher and the student, especially when it comes to computer modeling. With so many terms and functionalities to familiarize oneself with, this task can be overwhelming to even the most knowledgeable student. The purpose of this paper is to describe the methodology used in the creation of a new set of curricula for those attempting to learn how to use the Dynamic Traffic Simulation Package with Multi-Resolution Modeling. The current DLSim curriculum currently relates information via high-concept terms and complicated graphics. The information in this paper aims to provide a streamlined set of curricula for new users of DLSim, including lesson plans and improved infographics.

ContributorsMills, Alexander (Author) / Zhou, Xuesong (Thesis director) / Chen, Yinong (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor)
Created2022-05
164915-Thumbnail Image.jpg
Description

The process of learning a new skill can be time consuming and difficult for both the teacher and the student, especially when it comes to computer modeling. With so many terms and functionalities to familiarize oneself with, this task can be overwhelming to even the most knowledgeable student. The purpose

The process of learning a new skill can be time consuming and difficult for both the teacher and the student, especially when it comes to computer modeling. With so many terms and functionalities to familiarize oneself with, this task can be overwhelming to even the most knowledgeable student. The purpose of this paper is to describe the methodology used in the creation of a new set of curricula for those attempting to learn how to use the Dynamic Traffic Simulation Package with Multi-Resolution Modeling. The current DLSim curriculum currently relates information via high-concept terms and complicated graphics. The information in this paper aims to provide a streamlined set of curricula for new users of DLSim, including lesson plans and improved infographics.

ContributorsMills, Alexander (Author) / Zhou, Xuesong (Thesis director) / Chen, Yinong (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor)
Created2022-05
164916-Thumbnail Image.jpg
Description

The process of learning a new skill can be time consuming and difficult for both the teacher and the student, especially when it comes to computer modeling. With so many terms and functionalities to familiarize oneself with, this task can be overwhelming to even the most knowledgeable student. The purpose

The process of learning a new skill can be time consuming and difficult for both the teacher and the student, especially when it comes to computer modeling. With so many terms and functionalities to familiarize oneself with, this task can be overwhelming to even the most knowledgeable student. The purpose of this paper is to describe the methodology used in the creation of a new set of curricula for those attempting to learn how to use the Dynamic Traffic Simulation Package with Multi-Resolution Modeling. The current DLSim curriculum currently relates information via high-concept terms and complicated graphics. The information in this paper aims to provide a streamlined set of curricula for new users of DLSim, including lesson plans and improved infographics.

ContributorsMills, Alexander (Author) / Zhou, Xuesong (Thesis director) / Chen, Yinong (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor)
Created2022-05
Description

Find My College is an app to help people who are interested in pursuing a collegiate degree; find a college/s that is right for them. This app is designed using the Ionic Framework, to allow access across all operating systems such as Android and MacOS. We wanted to create an

Find My College is an app to help people who are interested in pursuing a collegiate degree; find a college/s that is right for them. This app is designed using the Ionic Framework, to allow access across all operating systems such as Android and MacOS. We wanted to create an app that people using Android or Apple can use, and this framework allows us to do that. The app is very user friendly and straightforward, which makes it usable to all types of people. It will be a free to use app that can be improved and adjusted if changes are needed/wanted.

ContributorsSolis, Jalen (Author) / Vadlamudi, Sai (Co-author) / Miller, Phillip (Thesis director) / De Luca, Gennaro (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
165162-Thumbnail Image.png
ContributorsSolis, Jalen (Author) / Vadlamudi, Sai (Co-author) / Miller, Phillip (Thesis director) / De Luca, Gennaro (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05