Matching Items (19)
Filtering by

Clear all filters

152165-Thumbnail Image.png
Description
Surgery as a profession requires significant training to improve both clinical decision making and psychomotor proficiency. In the medical knowledge domain, tools have been developed, validated, and accepted for evaluation of surgeons' competencies. However, assessment of the psychomotor skills still relies on the Halstedian model of apprenticeship, wherein surgeons are

Surgery as a profession requires significant training to improve both clinical decision making and psychomotor proficiency. In the medical knowledge domain, tools have been developed, validated, and accepted for evaluation of surgeons' competencies. However, assessment of the psychomotor skills still relies on the Halstedian model of apprenticeship, wherein surgeons are observed during residency for judgment of their skills. Although the value of this method of skills assessment cannot be ignored, novel methodologies of objective skills assessment need to be designed, developed, and evaluated that augment the traditional approach. Several sensor-based systems have been developed to measure a user's skill quantitatively, but use of sensors could interfere with skill execution and thus limit the potential for evaluating real-life surgery. However, having a method to judge skills automatically in real-life conditions should be the ultimate goal, since only with such features that a system would be widely adopted. This research proposes a novel video-based approach for observing surgeons' hand and surgical tool movements in minimally invasive surgical training exercises as well as during laparoscopic surgery. Because our system does not require surgeons to wear special sensors, it has the distinct advantage over alternatives of offering skills assessment in both learning and real-life environments. The system automatically detects major skill-measuring features from surgical task videos using a computing system composed of a series of computer vision algorithms and provides on-screen real-time performance feedback for more efficient skill learning. Finally, the machine-learning approach is used to develop an observer-independent composite scoring model through objective and quantitative measurement of surgical skills. To increase effectiveness and usability of the developed system, it is integrated with a cloud-based tool, which automatically assesses surgical videos upload to the cloud.
ContributorsIslam, Gazi (Author) / Li, Baoxin (Thesis advisor) / Liang, Jianming (Thesis advisor) / Dinu, Valentin (Committee member) / Greenes, Robert (Committee member) / Smith, Marshall (Committee member) / Kahol, Kanav (Committee member) / Patel, Vimla L. (Committee member) / Arizona State University (Publisher)
Created2013
149744-Thumbnail Image.png
Description
The video game graphics pipeline has traditionally rendered the scene using a polygonal approach. Advances in modern graphics hardware now allow the rendering of parametric methods. This thesis explores various smooth surface rendering methods that can be integrated into the video game graphics engine. Moving over to parametric or smooth

The video game graphics pipeline has traditionally rendered the scene using a polygonal approach. Advances in modern graphics hardware now allow the rendering of parametric methods. This thesis explores various smooth surface rendering methods that can be integrated into the video game graphics engine. Moving over to parametric or smooth surfaces from the polygonal domain has its share of issues and there is an inherent need to address various rendering bottlenecks that could hamper such a move. The game engine needs to choose an appropriate method based on in-game characteristics of the objects; character and animated objects need more sophisticated methods whereas static objects could use simpler techniques. Scaling the polygon count over various hardware platforms becomes an important factor. Much control is needed over the tessellation levels, either imposed by the hardware limitations or by the application, to be able to adaptively render the mesh without significant loss in performance. This thesis explores several methods that would help game engine developers in making correct design choices by optimally balancing the trade-offs while rendering the scene using smooth surfaces. It proposes a novel technique for adaptive tessellation of triangular meshes that vastly improves speed and tessellation count. It develops an approximate method for rendering Loop subdivision surfaces on tessellation enabled hardware. A taxonomy and evaluation of the methods is provided and a unified rendering system that provides automatic level of detail by switching between the methods is proposed.
ContributorsAmresh, Ashish (Author) / Farin, Gerlad (Thesis advisor) / Razdan, Anshuman (Thesis advisor) / Wonka, Peter (Committee member) / Hansford, Dianne (Committee member) / Arizona State University (Publisher)
Created2011
150447-Thumbnail Image.png
Description
Night vision goggles (NVGs) are widely used by helicopter pilots for flight missions at night, but the equipment can present visually confusing images especially in urban areas. A simulation tool with realistic nighttime urban images would help pilots practice and train for flight with NVGs. However, there is a lack

Night vision goggles (NVGs) are widely used by helicopter pilots for flight missions at night, but the equipment can present visually confusing images especially in urban areas. A simulation tool with realistic nighttime urban images would help pilots practice and train for flight with NVGs. However, there is a lack of tools for visualizing urban areas at night. This is mainly due to difficulties in gathering the light system data, placing the light systems at suitable locations, and rendering millions of lights with complex light intensity distributions (LID). Unlike daytime images, a city can have millions of light sources at night, including street lights, illuminated signs, and light shed from building interiors through windows. In this paper, a Procedural Lighting tool (PL), which predicts the positions and properties of street lights, is presented. The PL tool is used to accomplish three aims: (1) to generate vector data layers for geographic information systems (GIS) with statistically estimated information on lighting designs for streets, as well as the locations, orientations, and models for millions of streetlights; (2) to generate geo-referenced raster data to suitable for use as light maps that cover a large scale urban area so that the effect of millions of street light can be accurately rendered at real time, and (3) to extend existing 3D models by generating detailed light-maps that can be used as UV-mapped textures to render the model. An interactive graphical user interface (GUI) for configuring and previewing lights from a Light System Database (LDB) is also presented. The GUI includes physically accurate information about LID and also the lights' spectral power distributions (SPDs) so that a light-map can be generated for use with any sensor if the sensors luminosity function is known. Finally, for areas where more detail is required, a tool has been developed for editing and visualizing light effects over a 3D building from many light sources including area lights and windows. The above components are integrated in the PL tool to produce a night time urban view for not only a large-scale area but also a detail of a city building.
ContributorsChuang, Chia-Yuan (Author) / Femiani, John (Thesis advisor) / Razdan, Anshuman (Committee member) / Amresh, Ashish (Committee member) / Arizona State University (Publisher)
Created2011
156121-Thumbnail Image.png
Description
The technological revolution has caused the entire world to migrate to a digital environment and health care is no exception to this. Electronic Health Records (EHR) or Electronic Medical Records (EMR) are the digital repository for health data of patients. Nation wide efforts have been made by the federal government

The technological revolution has caused the entire world to migrate to a digital environment and health care is no exception to this. Electronic Health Records (EHR) or Electronic Medical Records (EMR) are the digital repository for health data of patients. Nation wide efforts have been made by the federal government to promote the usage of EHRs as they have been found to improve quality of health service. Although EHR systems have been implemented almost everywhere, active use of EHR applications have not replaced paper documentation. Rather, they are often used to store transcribed data from paper documentation after each clinical procedure. This process is found to be prone to errors such as data omission, incomplete data documentation and is also time consuming. This research aims to help improve adoption of real-time EHRs usage while documenting data by improving the usability of an iPad based EHR application that is used during resuscitation process in the intensive care unit. Using Cognitive theories and HCI frameworks, this research identified areas of improvement and customizations in the application that were required to exclusively match the work flow of the resuscitation team at the Mayo Clinic. In addition to this, a Handwriting Recognition Engine (HRE) was integrated into the application to support a stylus based information input into EHR, which resembles our target users’ traditional pen and paper based documentation process. The EHR application was updated and then evaluated with end users at the Mayo clinic. The users found the application to be efficient, usable and they showed preference in using this application over the paper-based documentation.
ContributorsSubbiah, Naveen Kumar (Author) / Patel, Vimla L. (Thesis advisor) / Hsiao, Sharon (Thesis advisor) / Sen, Ayan (Committee member) / Atkinson, Robert K (Committee member) / Arizona State University (Publisher)
Created2018
153845-Thumbnail Image.png
Description
Hospital Emergency Departments (EDs) are frequently crowded. The Center for

Medicare and Medicaid Services (CMS) collects performance measurements from EDs

such as that of the door to clinician time. The door to clinician time is the time at which a

patient is first seen by a clinician. Current methods for

Hospital Emergency Departments (EDs) are frequently crowded. The Center for

Medicare and Medicaid Services (CMS) collects performance measurements from EDs

such as that of the door to clinician time. The door to clinician time is the time at which a

patient is first seen by a clinician. Current methods for documenting the door to clinician

time are in written form and may contain inaccuracies. The goal of this thesis is to

provide a method for automatic and accurate retrieval and documentation of the door to

clinician time. To automatically collect door to clinician times, single board computers

were installed in patient rooms that logged the time whenever they saw a specific

Bluetooth emission from a device that the clinician carried. The Bluetooth signal is used

to calculate the distance of the clinician from the single board computer. The logged time

and distance calculation is then sent to the server where it is determined if the clinician

was in the room seeing the patient at the time logged. The times automatically collected

were compared with the handwritten times recorded by clinicians and have shown that

they are justifiably accurate to the minute.
ContributorsFrisby, Joshua (Author) / Nelson, Brian C (Thesis advisor) / Patel, Vimla L. (Thesis advisor) / Smith, Vernon (Committee member) / Kaufman, David R. (Committee member) / Arizona State University (Publisher)
Created2015
154470-Thumbnail Image.png
Description
For this master's thesis, an open learner model is integrated with Quinn, a teachable robotic agent developed at Arizona State University. This system is represented as a feedback system, which aims to improve a student’s understanding of a subject. It also helps to understand the effect of the learner model

For this master's thesis, an open learner model is integrated with Quinn, a teachable robotic agent developed at Arizona State University. This system is represented as a feedback system, which aims to improve a student’s understanding of a subject. It also helps to understand the effect of the learner model when it is represented by performance of the teachable agent. The feedback system represents performance of the teachable agent, and not of a student. Data in the feedback system is thus updated according to a student's understanding of the subject. This provides students an opportunity to enhance their understanding of a subject by analyzing their performance. To test the effectiveness of the feedback system, student understanding in two different conditions is analyzed. In the first condition a feedback report is not provided to the students, while in the second condition the feedback report is provided in the form of the agent’s performance.
ContributorsUpadhyay, Abha (Author) / Walker, Erin (Thesis advisor) / Nelson, Brian (Committee member) / Amresh, Ashish (Committee member) / Arizona State University (Publisher)
Created2016
154054-Thumbnail Image.png
Description
The American Heart Association recommended in 1997 the data elements that should be collected from resuscitations in hospitals. (15) Currently, data documentation from resuscitation events in hospitals, termed ‘code blue’ events, utilizes a paper form, which is institution-specific. Problems with data capture and transcription exists, due to the challenges of

The American Heart Association recommended in 1997 the data elements that should be collected from resuscitations in hospitals. (15) Currently, data documentation from resuscitation events in hospitals, termed ‘code blue’ events, utilizes a paper form, which is institution-specific. Problems with data capture and transcription exists, due to the challenges of dynamic documentation of patient, event and outcome variables as the code blue event unfolds.

This thesis is based on the hypothesis that an electronic version of code blue real-time data capture would lead to improved resuscitation data transcription, and enable clinicians to address deficiencies in quality of care. The primary goal of this thesis is to create an iOS based application, primarily designed for iPads, for code blue events at the Mayo Clinic Hospital. The secondary goal is to build an open-source software development framework for converting paper-based hospital protocols into digital format.

The tool created in this study enabled data documentation to be completed electronically rather than on paper for resuscitation outcomes. The tool was evaluated for usability with twenty nurses, the end-users, at Mayo Clinic in Phoenix, Arizona. The results showed the preference of users for the iPad application. Furthermore, a qualitative survey showed the clinicians perceived the electronic version to be more accurate and efficient than paper-based documentation, both of which are essential for an emergency code blue resuscitation procedure.
ContributorsBokhari, Wasif (Author) / Patel, Vimla L. (Thesis advisor) / Amresh, Ashish (Thesis advisor) / Nelson, Brian (Committee member) / Sen, Ayan (Committee member) / Arizona State University (Publisher)
Created2015
154698-Thumbnail Image.png
Description
Lecture videos are a widely used resource for learning. A simple way to create

videos is to record live lectures, but these videos end up being lengthy, include long

pauses and repetitive words making the viewing experience time consuming. While

pauses are useful in live learning environments where students take notes, I question

the

Lecture videos are a widely used resource for learning. A simple way to create

videos is to record live lectures, but these videos end up being lengthy, include long

pauses and repetitive words making the viewing experience time consuming. While

pauses are useful in live learning environments where students take notes, I question

the value of pauses in video lectures. Techniques and algorithms that can shorten such

videos can have a huge impact in saving students’ time and reducing storage space.

I study this problem of shortening videos by removing long pauses and adaptively

modifying the playback rate by emphasizing the most important sections of the video

and its effect on the student community. The playback rate is designed in such a

way to play uneventful sections faster and significant sections slower. Important and

unimportant sections of a video are identified using textual analysis. I use an existing

speech-to-text algorithm to extract the transcript and apply latent semantic analysis

and standard information retrieval techniques to identify the relevant segments of

the video. I compute relevance scores of different segments and propose a variable

playback rate for each of these segments. The aim is to reduce the amount of time

students spend on passive learning while watching videos without harming their ability

to follow the lecture. I validate the approach by conducting a user study among

computer science students and measuring their engagement. The results indicate

no significant difference in their engagement when this method is compared to the

original unedited video.
ContributorsPurushothama Shenoy, Sreenivas (Author) / Amresh, Ashish (Thesis advisor) / Femiani, John (Committee member) / Walker, Erin (Committee member) / Arizona State University (Publisher)
Created2016
154717-Thumbnail Image.png
Description
Large datasets of sub-meter aerial imagery represented as orthophoto mosaics are widely available today, and these data sets may hold a great deal of untapped information. This imagery has a potential to locate several types of features; for example, forests, parking lots, airports, residential areas, or freeways in the imagery.

Large datasets of sub-meter aerial imagery represented as orthophoto mosaics are widely available today, and these data sets may hold a great deal of untapped information. This imagery has a potential to locate several types of features; for example, forests, parking lots, airports, residential areas, or freeways in the imagery. However, the appearances of these things vary based on many things including the time that the image is captured, the sensor settings, processing done to rectify the image, and the geographical and cultural context of the region captured by the image. This thesis explores the use of deep convolutional neural networks to classify land use from very high spatial resolution (VHR), orthorectified, visible band multispectral imagery. Recent technological and commercial applications have driven the collection a massive amount of VHR images in the visible red, green, blue (RGB) spectral bands, this work explores the potential for deep learning algorithms to exploit this imagery for automatic land use/ land cover (LULC) classification. The benefits of automatic visible band VHR LULC classifications may include applications such as automatic change detection or mapping. Recent work has shown the potential of Deep Learning approaches for land use classification; however, this thesis improves on the state-of-the-art by applying additional dataset augmenting approaches that are well suited for geospatial data. Furthermore, the generalizability of the classifiers is tested by extensively evaluating the classifiers on unseen datasets and we present the accuracy levels of the classifier in order to show that the results actually generalize beyond the small benchmarks used in training. Deep networks have many parameters, and therefore they are often built with very large sets of labeled data. Suitably large datasets for LULC are not easy to come by, but techniques such as refinement learning allow networks trained for one task to be retrained to perform another recognition task. Contributions of this thesis include demonstrating that deep networks trained for image recognition in one task (ImageNet) can be efficiently transferred to remote sensing applications and perform as well or better than manually crafted classifiers without requiring massive training data sets. This is demonstrated on the UC Merced dataset, where 96% mean accuracy is achieved using a CNN (Convolutional Neural Network) and 5-fold cross validation. These results are further tested on unrelated VHR images at the same resolution as the training set.
ContributorsUba, Nagesh Kumar (Author) / Femiani, John (Thesis advisor) / Razdan, Anshuman (Committee member) / Amresh, Ashish (Committee member) / Arizona State University (Publisher)
Created2016
154796-Thumbnail Image.png
Description
In the last decade, the number of people who own a mobile phone or portable electronic communication device has grown exponentially. Recent advances in smartphone technology have enabled mobile devices to provide applications (“mHealth apps”) to support delivering interventions, tracking health treatments, or involving a healthcare team into the treatment

In the last decade, the number of people who own a mobile phone or portable electronic communication device has grown exponentially. Recent advances in smartphone technology have enabled mobile devices to provide applications (“mHealth apps”) to support delivering interventions, tracking health treatments, or involving a healthcare team into the treatment process and symptom monitoring. Although the popularity of mHealth apps is increasing, few lessons have been shared regarding user experience design and evaluation for such innovations as they relate to clinical outcomes. Studies assessing usability for mobile apps primarily rely on survey instruments. Though surveys are effective in determining user perception of usability and positive attitudes towards an app, they do not directly assess app feature usage, and whether feature usage and related aspects of app design are indicative of whether intended tasks are completed by users. This is significant in the area of mHealth apps, as proper utilization of the app determines compliance to a clinical study protocol. Therefore it is important to understand how design directly impacts compliance, specifically what design factors are prevalent in non-compliant users. This research studies the impact of usability features on clinical protocol compliance by applying a mixed methods approach to usability assessment, combining traditional surveys, log analysis, and clickstream analysis to determine the connection of design to outcomes. This research is novel in its construction of the mixed methods approach and in its attempt to tie usability results to impacts on clinical protocol compliance. The validation is a case study approach, applying the methods to an mHealth app developed for early prevention of anxiety in middle school students. The results of three empirical studies are shared that support the construction of the mixed methods approach.
ContributorsPatwardhan, Mandar (Author) / Gary, Kevin A (Thesis advisor) / Pina, Armando (Committee member) / Amresh, Ashish (Committee member) / Arizona State University (Publisher)
Created2016