Matching Items (15)
Filtering by

Clear all filters

131525-Thumbnail Image.png
Description
The original version of Helix, the one I pitched when first deciding to make a video game
for my thesis, is an action-platformer, with the intent of metroidvania-style progression
and an interconnected world map.

The current version of Helix is a turn based role-playing game, with the intent of roguelike
gameplay and a dark

The original version of Helix, the one I pitched when first deciding to make a video game
for my thesis, is an action-platformer, with the intent of metroidvania-style progression
and an interconnected world map.

The current version of Helix is a turn based role-playing game, with the intent of roguelike
gameplay and a dark fantasy theme. We will first be exploring the challenges that came
with programming my own game - not quite from scratch, but also without a prebuilt
engine - then transition into game design and how Helix has evolved from its original form
to what we see today.
ContributorsDiscipulo, Isaiah K (Author) / Meuth, Ryan (Thesis director) / Kobayashi, Yoshihiro (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131529-Thumbnail Image.png
Description
RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to

RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to properly dispose of the material. Some searches will show locations of facilities near users that collect certain materials and dispose of the materials properly. This is a full stack software project that explores open source software and APIs, UI/UX design, and iOS development.
ContributorsTran, Nikki (Author) / Ganesh, Tirupalavanam (Thesis director) / Meuth, Ryan (Committee member) / Watts College of Public Service & Community Solut (Contributor) / Department of Information Systems (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
135380-Thumbnail Image.png
Description
Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide

Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide a rigorous, collaborative, and relevant academic program emphasizing an innovative, problem-based curriculum that develops literacy in the sciences, mathematics, and the arts, thus cultivating critical thinkers, creative problem-solvers, and compassionate citizens, who are able to thrive in our increasingly complex and technological communities." Computational thinking is an important part in developing a future problem solver Bioscience High School is looking to produce. Bioscience High School is unique in the fact that every student has a computer available for him or her to use. Therefore, it makes complete sense for the school to add computer science to their curriculum because one of the school's goals is to be able to utilize their resources to their full potential. However, the school's attempt at computer science integration falls short due to the lack of expertise amongst the math and science teachers. The lack of training and support has postponed the development of the program and they are desperately in need of someone with expertise in the field to help reboot the program. As a result, I've decided to create a course that is focused on teaching students the concepts of computational thinking and its application through Scratch and Arduino programming.
ContributorsLiu, Deming (Author) / Meuth, Ryan (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136728-Thumbnail Image.png
Description
This project was centered around designing a processor model (using the C programming language) based on the Coldfire computer architecture that will run on third party software known as Open Virtual Platforms. The end goal is to have a fully functional processor that can run Coldfire instructions and utilize peripheral

This project was centered around designing a processor model (using the C programming language) based on the Coldfire computer architecture that will run on third party software known as Open Virtual Platforms. The end goal is to have a fully functional processor that can run Coldfire instructions and utilize peripheral devices in the same way as the hardware used in the embedded systems lab at ASU. This project would cut down the substantial amount of time students spend commuting to the lab. Having the processor directly at their disposal would also encourage them to spend more time outside of class learning the hardware and familiarizing themselves with development on an embedded micro-controller. The model will be accurate, fast and reliable. These aspects will be achieved through rigorous unit testing and use of the OVP platform which provides instruction accurate simulations at hundreds of MIPS (million instructions per second) for the specified model. The end product was able to accurately simulate a subset of the Coldfire instructions at very high rates.
ContributorsDunning, David Connor (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-12
136364-Thumbnail Image.png
Description
The purpose of this project was to program a Raspberry Pi to be able to play music from both local storage on the Pi and from internet radio stations such as Pandora. The Pi also needs to be able to play various types of file formats, such as mp3 and

The purpose of this project was to program a Raspberry Pi to be able to play music from both local storage on the Pi and from internet radio stations such as Pandora. The Pi also needs to be able to play various types of file formats, such as mp3 and FLAC. Finally, the project is also to be driven by a mobile app running on a smartphone or tablet. To achieve this, a client server design was employed where the Raspberry Pi acts as the server and the mobile app is the client. The server functionality was achieved using a Python script that listens on a socket and calls various executables that handle the different formats of music being played. The client functionality was achieved by programming an Android app in Java that sends encoded commands to the server, which the server decodes and begins playing the music that command dictates. The designs for both the client and server are easily extensible and allow for any future modifications to the project to be easily made.
ContributorsStorto, Michael Olson (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
133397-Thumbnail Image.png
Description
Students learn in various ways \u2014 visualization, auditory, memorizing, or making analogies. Traditional lecturing in engineering courses and the learning styles of engineering students are inharmonious causing students to be at a disadvantage based on their learning style (Felder & Silverman, 1988). My study analyzes the traditional approach to learning

Students learn in various ways \u2014 visualization, auditory, memorizing, or making analogies. Traditional lecturing in engineering courses and the learning styles of engineering students are inharmonious causing students to be at a disadvantage based on their learning style (Felder & Silverman, 1988). My study analyzes the traditional approach to learning coding skills which is unnatural to engineering students with no previous exposure and examining if visual learning enhances introductory computer science education. Visual and text-based learning are evaluated to determine how students learn introductory coding skills and associated problem solving skills. My study was conducted to observe how the two types of learning aid the students in learning how to problem solve as well as how much knowledge can be obtained in a short period of time. The application used for visual learning was Scratch and Repl.it was used for text-based learning. Two exams were made to measure the progress made by each student. The topics covered by the exam were initialization, variable reassignment, output, if statements, if else statements, nested if statements, logical operators, arrays/lists, while loop, type casting, functions, object orientation, and sorting. Analysis of the data collected in the study allow us to observe whether the traditional method of teaching programming or block-based programming is more beneficial and in what topics of introductory computer science concepts.
ContributorsVidaure, Destiny Vanessa (Author) / Meuth, Ryan (Thesis director) / Yang, Yezhou (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137409-Thumbnail Image.png
Description
Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to

Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to determine if the signals can be distinguished between each other and processed into output signals to trigger events in prosthetics. Results from the study suggest that the PSD estimates can be used to compare signals that have significant differences such as the wrist, scalp, and fingers, but it cannot fully distinguish between signals that are closely related, such as two different fingers. The signals that were identified were able to be translated into the physical output simulated on the Arduino circuit.
ContributorsJanis, William Edward (Author) / LaBelle, Jeffrey (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-12
134079-Thumbnail Image.png
Description
This project is a full integrated development environment implementing the LEGv8 assembly language standard, to be used in classroom settings. The LEGv8 assembly language is defined by the ARM edition of "Computer Organization and Design: The Hardware/Software Interface" by David A. Patterson and John L. Hennessy as a more approachable

This project is a full integrated development environment implementing the LEGv8 assembly language standard, to be used in classroom settings. The LEGv8 assembly language is defined by the ARM edition of "Computer Organization and Design: The Hardware/Software Interface" by David A. Patterson and John L. Hennessy as a more approachable alternative to the full ARMv8 instruction set. The MIPS edition of that same book is used in the Computer Organization course at ASU. This class makes heavy use of the "MARS" MIPS simulator, which allows students to write and run their own MIPS assembly programs. Writing assembly language programs is a key component of the course, as assembly programs have many design difficulties as compared to a high-level language. This project is a fork of the MARS project. The interface and functionality remain largely the same aside from the change to supporting the LEGv8 syntax and instruction set. Faculty used to the MARS environment from teaching Computer Organization should only have to adjust to the new language standard, as the editor and environment will be familiar. The available instructions are basic arithmetic/logical operations, memory interaction, and flow control. Both floating-point and integer operations are supported, with limited support of conditional execution. Only branches can be conditionally executed, per LEGv8. Directives remain in the format supported by MARS, as documentation on ARM-style directives is both sparse and agreeable to this standard. The operating system functions supported by the MARS simulator also remain, as there is no generally standardized requirements for operating system interactions.
ContributorsWhite, Josiah Jeremiah (Author) / Meuth, Ryan (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135528-Thumbnail Image.png
Description
Abstract
This work details the process of designing and implementing an embedded system
utilized to take measurements from a water cooler and post that data onto a publicly accessible web server. It embraces the Web 4.0, Internet of Things, mindset of making everyday appliances web accessible. The project was designed to satisfy

Abstract
This work details the process of designing and implementing an embedded system
utilized to take measurements from a water cooler and post that data onto a publicly accessible web server. It embraces the Web 4.0, Internet of Things, mindset of making everyday appliances web accessible. The project was designed to satisfy the needs of a local faculty member who wished to know the water levels available in his office water cooler, potentially saving him the disappointment of discovering an empty container. 


This project utilizes an Arduino microprocessor, an ESP 8266 Wi-Fi module, and a variety of sensors to detect water levels in filtered water unit located on the fourth floor of the the Brickyard Building, BYENG, at Arizona State University. This implementation will not interfere with the system already set in place to store and transfer water. The level of accuracy in water levels is expected to give the ability to discern +/- 1.5 liters of water. This system will send will send information to a created web service from which anyone with internet capabilities can gain access. The interface will display current water levels and attempt to predict at what time the water levels will be depleted. In the short term, this information will be useful for individuals on the floor to discern when they are able to extract water from the system. Overtime, the information this system gathers will map the drinking trends of the floor and can allow for a scheduling of water delivery that is more consistent with the demand of those working on the floor.
ContributorsEnriquez, Alexander (Author) / Meuth, Ryan (Thesis director) / Burger, Kevin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

The Oasis app is a self-appraisal tool for potential or current problem gamblers to take control of their habits by providing periodic check-in notifications during a gambling session and allowing users to see their progress over time. Oasis is backed by substantial background research surrounding addiction intervention methods, especially in

The Oasis app is a self-appraisal tool for potential or current problem gamblers to take control of their habits by providing periodic check-in notifications during a gambling session and allowing users to see their progress over time. Oasis is backed by substantial background research surrounding addiction intervention methods, especially in the field of self-appraisal messaging, and applies this messaging in a familiar mobile notification form that can effectively change user’s behavior. User feedback was collected and used to improve the app, and the results show a promising tool that could help those who need it in the future.

ContributorsBlunt, Thomas (Author) / Meuth, Ryan (Thesis director) / McDaniel, Troy (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05