Matching Items (26)
Filtering by

Clear all filters

152168-Thumbnail Image.png
Description
There has been a lot of research in the field of artificial intelligence about thinking machines. Alan Turing proposed a test to observe a machine's intelligent behaviour with respect to natural language conversation. The Winograd schema challenge is suggested as an alternative, to the Turing test. It needs inferencing capabilities,

There has been a lot of research in the field of artificial intelligence about thinking machines. Alan Turing proposed a test to observe a machine's intelligent behaviour with respect to natural language conversation. The Winograd schema challenge is suggested as an alternative, to the Turing test. It needs inferencing capabilities, reasoning abilities and background knowledge to get the answer right. It involves a coreference resolution task in which a machine is given a sentence containing a situation which involves two entities, one pronoun and some more information about the situation and the machine has to come up with the right resolution of a pronoun to one of the entities. The complexity of the task is increased with the fact that the Winograd sentences are not constrained by one domain or specific sentence structure and it also contains a lot of human proper names. This modification makes the task of association of entities, to one particular word in the sentence, to derive the answer, difficult. I have developed a pronoun resolver system for the confined domain Winograd sentences. I have developed a classifier or filter which takes input sentences and decides to accept or reject them based on a particular criteria. Once the sentence is accepted. I run parsers on it to obtain the detailed analysis. Furthermore I have developed four answering modules which use world knowledge and inferencing mechanisms to try and resolve the pronoun. The four techniques I use are : ConceptNet knowledgebase, Search engine pattern counts,Narrative event chains and sentiment analysis. I have developed a particular aggregation mechanism for the answers from these modules to arrive at a final answer. I have used caching technique for the association relations that I obtain for different modules, so as to boost the performance. I run my system on the standard ‘nyu dataset’ of Winograd sentences and questions. This dataset is then restricted, by my classifier, to 90 sentences. I evaluate my system on this 90 sentence dataset. When I compare my results against the state of the art system on the same dataset, I get nearly 4.5 % improvement in the restricted domain.
ContributorsBudukh, Tejas Ulhas (Author) / Baral, Chitta (Thesis advisor) / VanLehn, Kurt (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2013
152909-Thumbnail Image.png
Description
This thesis is an initial test of the hypothesis that superficial measures suffice for measuring collaboration among pairs of students solving complex math problems, where the degree of collaboration is categorized at a high level. Data were collected

in the form of logs from students' tablets and the vocal interaction

This thesis is an initial test of the hypothesis that superficial measures suffice for measuring collaboration among pairs of students solving complex math problems, where the degree of collaboration is categorized at a high level. Data were collected

in the form of logs from students' tablets and the vocal interaction between pairs of students. Thousands of different features were defined, and then extracted computationally from the audio and log data. Human coders used richer data (several video streams) and a thorough understand of the tasks to code episodes as

collaborative, cooperative or asymmetric contribution. Machine learning was used to induce a detector, based on random forests, that outputs one of these three codes for an episode given only a characterization of the episode in terms of superficial features. An overall accuracy of 92.00% (kappa = 0.82) was obtained when

comparing the detector's codes to the humans' codes. However, due irregularities in running the study (e.g., the tablet software kept crashing), these results should be viewed as preliminary.
ContributorsViswanathan, Sree Aurovindh (Author) / VanLehn, Kurt (Thesis advisor) / T.H CHI, Michelene (Committee member) / Walker, Erin (Committee member) / Arizona State University (Publisher)
Created2014
152976-Thumbnail Image.png
Description
Research in the learning sciences suggests that students learn better by collaborating with their peers than learning individually. Students working together as a group tend to generate new ideas more frequently and exhibit a higher level of reasoning. In this internet age with the advent of massive open online courses

Research in the learning sciences suggests that students learn better by collaborating with their peers than learning individually. Students working together as a group tend to generate new ideas more frequently and exhibit a higher level of reasoning. In this internet age with the advent of massive open online courses (MOOCs), students across the world are able to access and learn material remotely. This creates a need for tools that support distant or remote collaboration. In order to build such tools we need to understand the basic elements of remote collaboration and how it differs from traditional face-to-face collaboration.

The main goal of this thesis is to explore how spoken dialogue varies in face-to-face and remote collaborative learning settings. Speech data is collected from student participants solving mathematical problems collaboratively on a tablet. Spoken dialogue is analyzed based on conversational and acoustic features in both the settings. Looking for collaborative differences of transactivity and dialogue initiative, both settings are compared in detail using machine learning classification techniques based on acoustic and prosodic features of speech. Transactivity is defined as a joint construction of knowledge by peers. The main contributions of this thesis are: a speech corpus to analyze spoken dialogue in face-to-face and remote settings and an empirical analysis of conversation, collaboration, and speech prosody in both the settings. The results from the experiments show that amount of overlap is lower in remote dialogue than in the face-to-face setting. There is a significant difference in transactivity among strangers. My research benefits the computer-supported collaborative learning community by providing an analysis that can be used to build more efficient tools for supporting remote collaborative learning.
ContributorsNelakurthi, Arun Reddy (Author) / Pon-Barry, Heather (Thesis advisor) / VanLehn, Kurt (Committee member) / Walker, Erin (Committee member) / Arizona State University (Publisher)
Created2014
150293-Thumbnail Image.png
Description
Strong communities are important for society. One of the most important community builders, making friends, is poorly supported online. Dating sites support it but in romantic contexts. Other major social networks seem not to encourage it because either their purpose isn't compatible with introducing strangers or the prevalent methods of

Strong communities are important for society. One of the most important community builders, making friends, is poorly supported online. Dating sites support it but in romantic contexts. Other major social networks seem not to encourage it because either their purpose isn't compatible with introducing strangers or the prevalent methods of introduction aren't effective enough to merit use over real word alternatives. This paper presents a novel digital social network emphasizing creating friendships. Research has shown video chat communication can reach in-person levels of trust; coupled with a game environment to ease the discomfort people often have interacting with strangers and a recommendation engine, Zazzer, the presented system, allows people to meet and get to know each other in a manner much more true to real life than traditional methods. Its network also allows players to continue to communicate afterwards. The evaluation looks at real world use, measuring the frequency with which players choose the video chat game versus alternative, more traditional methods of online introduction. It also looks at interactions after the initial meeting to discover how effective video chat games are in creating sticky social connections. After initial use it became apparent a critical mass of users would be necessary to draw strong conclusions, however the collected data seemed to give preliminary support to the idea that video chat games are more effective than traditional ways of meeting online in creating new relationships.
ContributorsSorensen, Asael (Author) / VanLehn, Kurt (Thesis advisor) / Liu, Huan (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2011
149950-Thumbnail Image.png
Description
With the rapid growth of mobile computing and sensor technology, it is now possible to access data from a variety of sources. A big challenge lies in linking sensor based data with social and cognitive variables in humans in real world context. This dissertation explores the relationship between creativity in

With the rapid growth of mobile computing and sensor technology, it is now possible to access data from a variety of sources. A big challenge lies in linking sensor based data with social and cognitive variables in humans in real world context. This dissertation explores the relationship between creativity in teamwork, and team members' movement and face-to-face interaction strength in the wild. Using sociometric badges (wearable sensors), electronic Experience Sampling Methods (ESM), the KEYS team creativity assessment instrument, and qualitative methods, three research studies were conducted in academic and industry R&D; labs. Sociometric badges captured movement of team members and face-to-face interaction between team members. KEYS scale was implemented using ESM for self-rated creativity and expert-coded creativity assessment. Activities (movement and face-to-face interaction) and creativity of one five member and two seven member teams were tracked for twenty five days, eleven days, and fifteen days respectively. Day wise values of movement and face-to-face interaction for participants were mean split categorized as creative and non-creative using self- rated creativity measure and expert-coded creativity measure. Paired-samples t-tests [t(36) = 3.132, p < 0.005; t(23) = 6.49 , p < 0.001] confirmed that average daily movement energy during creative days (M = 1.31, SD = 0.04; M = 1.37, SD = 0.07) was significantly greater than the average daily movement of non-creative days (M = 1.29, SD = 0.03; M = 1.24, SD = 0.09). The eta squared statistic (0.21; 0.36) indicated a large effect size. A paired-samples t-test also confirmed that face-to-face interaction tie strength of team members during creative days (M = 2.69, SD = 4.01) is significantly greater [t(41) = 2.36, p < 0.01] than the average face-to-face interaction tie strength of team members for non-creative days (M = 0.9, SD = 2.1). The eta squared statistic (0.11) indicated a large effect size. The combined approach of principal component analysis (PCA) and linear discriminant analysis (LDA) conducted on movement and face-to-face interaction data predicted creativity with 87.5% and 91% accuracy respectively. This work advances creativity research and provides a foundation for sensor based real-time creativity support tools for teams.
ContributorsTripathi, Priyamvada (Author) / Burleson, Winslow (Thesis advisor) / Liu, Huan (Committee member) / VanLehn, Kurt (Committee member) / Pentland, Alex (Committee member) / Arizona State University (Publisher)
Created2011
150224-Thumbnail Image.png
Description
Lots of previous studies have analyzed human tutoring at great depths and have shown expert human tutors to produce effect sizes, which is twice of that produced by an intelligent tutoring system (ITS). However, there has been no consensus on which factor makes them so effective. It is important to

Lots of previous studies have analyzed human tutoring at great depths and have shown expert human tutors to produce effect sizes, which is twice of that produced by an intelligent tutoring system (ITS). However, there has been no consensus on which factor makes them so effective. It is important to know this, so that same phenomena can be replicated in an ITS in order to achieve the same level of proficiency as expert human tutors. Also, to the best of my knowledge no one has looked at student reactions when they are working with a computer based tutor. The answers to both these questions are needed in order to build a highly effective computer-based tutor. My research focuses on the second question. In the first phase of my thesis, I analyzed the behavior of students when they were working with a step-based tutor Andes, using verbal-protocol analysis. The accomplishment of doing this was that I got to know of some ways in which students use a step-based tutor which can pave way for the creation of more effective computer-based tutors. I found from the first phase of the research that students often keep trying to fix errors by guessing repeatedly instead of asking for help by clicking the hint button. This phenomenon is known as hint refusal. Surprisingly, a large portion of the student's foundering was due to hint refusal. The hypothesis tested in the second phase of the research is that hint refusal can be significantly reduced and learning can be significantly increased if Andes uses more unsolicited hints and meta hints. An unsolicited hint is a hint that is given without the student asking for one. A meta-hint is like an unsolicited hint in that it is given without the student asking for it, but it just prompts the student to click on the hint button. Two versions of Andes were compared: the original version and a new version that gave more unsolicited and meta-hints. During a two-hour experiment, there were large, statistically reliable differences in several performance measures suggesting that the new policy was more effective.
ContributorsRanganathan, Rajagopalan (Author) / VanLehn, Kurt (Thesis advisor) / Atkinson, Robert (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2011
150234-Thumbnail Image.png
Description
Introductory programming courses, also known as CS1, have a specific set of expected outcomes related to the learning of the most basic and essential computational concepts in computer science (CS). However, two of the most often heard complaints in such courses are that (1) they are divorced from the reality

Introductory programming courses, also known as CS1, have a specific set of expected outcomes related to the learning of the most basic and essential computational concepts in computer science (CS). However, two of the most often heard complaints in such courses are that (1) they are divorced from the reality of application and (2) they make the learning of the basic concepts tedious. The concepts introduced in CS1 courses are highly abstract and not easily comprehensible. In general, the difficulty is intrinsic to the field of computing, often described as "too mathematical or too abstract." This dissertation presents a small-scale mixed method study conducted during the fall 2009 semester of CS1 courses at Arizona State University. This study explored and assessed students' comprehension of three core computational concepts - abstraction, arrays of objects, and inheritance - in both algorithm design and problem solving. Through this investigation students' profiles were categorized based on their scores and based on their mistakes categorized into instances of five computational thinking concepts: abstraction, algorithm, scalability, linguistics, and reasoning. It was shown that even though the notion of computational thinking is not explicit in the curriculum, participants possessed and/or developed this skill through the learning and application of the CS1 core concepts. Furthermore, problem-solving experiences had a direct impact on participants' knowledge skills, explanation skills, and confidence. Implications for teaching CS1 and for future research are also considered.
ContributorsBillionniere, Elodie V (Author) / Collofello, James (Thesis advisor) / Ganesh, Tirupalavanam G. (Thesis advisor) / VanLehn, Kurt (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2011
156611-Thumbnail Image.png
Description
Handwritten documents have gained popularity in various domains including education and business. A key task in analyzing a complex document is to distinguish between various content types such as text, math, graphics, tables and so on. For example, one such aspect could be a region on the document with a

Handwritten documents have gained popularity in various domains including education and business. A key task in analyzing a complex document is to distinguish between various content types such as text, math, graphics, tables and so on. For example, one such aspect could be a region on the document with a mathematical expression; in this case, the label would be math. This differentiation facilitates the performance of specific recognition tasks depending on the content type. We hypothesize that the recognition accuracy of the subsequent tasks such as textual, math, and shape recognition will increase, further leading to a better analysis of the document.

Content detection on handwritten documents assigns a particular class to a homogeneous portion of the document. To complete this task, a set of handwritten solutions was digitally collected from middle school students located in two different geographical regions in 2017 and 2018. This research discusses the methods to collect, pre-process and detect content type in the collected handwritten documents. A total of 4049 documents were extracted in the form of image, and json format; and were labelled using an object labelling software with tags being text, math, diagram, cross out, table, graph, tick mark, arrow, and doodle. The labelled images were fed to the Tensorflow’s object detection API to learn a neural network model. We show our results from two neural networks models, Faster Region-based Convolutional Neural Network (Faster R-CNN) and Single Shot detection model (SSD).
ContributorsFaizaan, Shaik Mohammed (Author) / VanLehn, Kurt (Thesis advisor) / Cheema, Salman Shaukat (Thesis advisor) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2018
156774-Thumbnail Image.png
Description
Research has shown that the learning processes can be enriched and enhanced with the presence of affective interventions. The goal of this dissertation was to design, implement, and evaluate an affective agent that provides affective support in real-time in order to enrich the student’s learning experience and performance by inducing

Research has shown that the learning processes can be enriched and enhanced with the presence of affective interventions. The goal of this dissertation was to design, implement, and evaluate an affective agent that provides affective support in real-time in order to enrich the student’s learning experience and performance by inducing and/or maintaining a productive learning path. This work combined research and best practices from affective computing, intelligent tutoring systems, and educational technology to address the design and implementation of an affective agent and corresponding pedagogical interventions. It included the incorporation of the affective agent into an Exploratory Learning Environment (ELE) adapted for this research.

A gendered, three-dimensional, animated, human-like character accompanied by text- and speech-based dialogue visually represented the proposed affective agent. The agent’s pedagogical interventions considered inputs from the ELE (interface, model building, and performance events) and from the user (emotional and cognitive events). The user’s emotional events captured by biometric sensors and processed by a decision-level fusion algorithm for a multimodal system in combination with the events from the ELE informed the production-rule-based behavior engine to define and trigger pedagogical interventions. The pedagogical interventions were focused on affective dimensions and occurred in the form of affective dialogue prompts and animations.

An experiment was conducted to assess the impact of the affective agent, Hope, on the student’s learning experience and performance. In terms of the student’s learning experience, the effect of the agent was analyzed in four components: perception of the instructional material, perception of the usefulness of the agent, ELE usability, and the affective responses from the agent triggered by the student’s affective states.

Additionally, in terms of the student’s performance, the effect of the agent was analyzed in five components: tasks completed, time spent solving a task, planning time while solving a task, usage of the provided help, and attempts to successfully complete a task. The findings from the experiment did not provide the anticipated results related to the effect of the agent; however, the results provided insights to improve diverse components in the design of affective agents as well as for the design of the behavior engines and algorithms to detect, represent, and handle affective information.
ContributorsChavez Echeagaray, Maria Elena (Author) / Atkinson, Robert K (Thesis advisor) / Burleson, Winslow (Thesis advisor) / Graesser, Arthur C. (Committee member) / VanLehn, Kurt (Committee member) / Walker, Erin A (Committee member) / Arizona State University (Publisher)
Created2018
156892-Thumbnail Image.png
Description
With advances in automatic speech recognition, spoken dialogue systems are assuming increasingly social roles. There is a growing need for these systems to be socially responsive, capable of building rapport with users. In human-human interactions, rapport is critical to patient-doctor communication, conflict resolution, educational interactions, and social engagement. Rapport between

With advances in automatic speech recognition, spoken dialogue systems are assuming increasingly social roles. There is a growing need for these systems to be socially responsive, capable of building rapport with users. In human-human interactions, rapport is critical to patient-doctor communication, conflict resolution, educational interactions, and social engagement. Rapport between people promotes successful collaboration, motivation, and task success. Dialogue systems which can build rapport with their user may produce similar effects, personalizing interactions to create better outcomes.

This dissertation focuses on how dialogue systems can build rapport utilizing acoustic-prosodic entrainment. Acoustic-prosodic entrainment occurs when individuals adapt their acoustic-prosodic features of speech, such as tone of voice or loudness, to one another over the course of a conversation. Correlated with liking and task success, a dialogue system which entrains may enhance rapport. Entrainment, however, is very challenging to model. People entrain on different features in many ways and how to design entrainment to build rapport is unclear. The first goal of this dissertation is to explore how acoustic-prosodic entrainment can be modeled to build rapport.

Towards this goal, this work presents a series of studies comparing, evaluating, and iterating on the design of entrainment, motivated and informed by human-human dialogue. These models of entrainment are implemented in the dialogue system of a robotic learning companion. Learning companions are educational agents that engage students socially to increase motivation and facilitate learning. As a learning companion’s ability to be socially responsive increases, so do vital learning outcomes. A second goal of this dissertation is to explore the effects of entrainment on concrete outcomes such as learning in interactions with robotic learning companions.

This dissertation results in contributions both technical and theoretical. Technical contributions include a robust and modular dialogue system capable of producing prosodic entrainment and other socially-responsive behavior. One of the first systems of its kind, the results demonstrate that an entraining, social learning companion can positively build rapport and increase learning. This dissertation provides support for exploring phenomena like entrainment to enhance factors such as rapport and learning and provides a platform with which to explore these phenomena in future work.
ContributorsLubold, Nichola Anne (Author) / Walker, Erin (Thesis advisor) / Pon-Barry, Heather (Thesis advisor) / Litman, Diane (Committee member) / VanLehn, Kurt (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2018