Matching Items (2,169)

Filtering by

Clear all filters

151802-Thumbnail Image.png

The classification of domain concepts in object-oriented systems

Description

The complexity of the systems that software engineers build has continuously grown since the inception of the field. What has not changed is the engineers' mental capacity to operate on about seven distinct pieces of information at a time. The

The complexity of the systems that software engineers build has continuously grown since the inception of the field. What has not changed is the engineers' mental capacity to operate on about seven distinct pieces of information at a time. The widespread use of UML has led to more abstract software design activities, however the same cannot be said for reverse engineering activities. The introduction of abstraction to reverse engineering will allow the engineer to move farther away from the details of the system, increasing his ability to see the role that domain level concepts play in the system. In this thesis, we present a technique that facilitates filtering of classes from existing systems at the source level based on their relationship to concepts in the domain via a classification method using machine learning. We showed that concepts can be identified using a machine learning classifier based on source level metrics. We developed an Eclipse plugin to assist with the process of manually classifying Java source code, and collecting metrics and classifications into a standard file format. We developed an Eclipse plugin to act as a concept identifier that visually indicates a class as a domain concept or not. We minimized the size of training sets to ensure a useful approach in practice. This allowed us to determine that a training set of 7:5 to 10% is nearly as effective as a training set representing 50% of the system. We showed that random selection is the most consistent and effective means of selecting a training set. We found that KNN is the most consistent performer among the learning algorithms tested. We determined the optimal feature set for this classification problem. We discussed two possible structures besides a one to one mapping of domain knowledge to implementation. We showed that classes representing more than one concept are simply concepts at differing levels of abstraction. We also discussed composite concepts representing a domain concept implemented by more than one class. We showed that these composite concepts are difficult to detect because the problem is NP-complete.

Contributors

Agent

Created

Date Created
2013

151851-Thumbnail Image.png

Dynamic programming algorithm for computing temporal logic robustness

Description

In this thesis we deal with the problem of temporal logic robustness estimation. We present a dynamic programming algorithm for the robust estimation problem of Metric Temporal Logic (MTL) formulas regarding a finite trace of time stated sequence. This algorithm

In this thesis we deal with the problem of temporal logic robustness estimation. We present a dynamic programming algorithm for the robust estimation problem of Metric Temporal Logic (MTL) formulas regarding a finite trace of time stated sequence. This algorithm not only tests if the MTL specification is satisfied by the given input which is a finite system trajectory, but also quantifies to what extend does the sequence satisfies or violates the MTL specification. The implementation of the algorithm is the DP-TALIRO toolbox for MATLAB. Currently it is used as the temporal logic robust computing engine of S-TALIRO which is a tool for MATLAB searching for trajectories of minimal robustness in Simulink/ Stateflow. DP-TALIRO is expected to have near linear running time and constant memory requirement depending on the structure of the MTL formula. DP-TALIRO toolbox also integrates new features not supported in its ancestor FW-TALIRO such as parameter replacement, most related iteration and most related predicate. A derivative of DP-TALIRO which is DP-T-TALIRO is also addressed in this thesis which applies dynamic programming algorithm for time robustness computation. We test the running time of DP-TALIRO and compare it with FW-TALIRO. Finally, we present an application where DP-TALIRO is used as the robustness computation core of S-TALIRO for a parameter estimation problem.

Contributors

Agent

Created

Date Created
2013

151867-Thumbnail Image.png

Advancing biomedical named entity recognition with multivariate feature selection and semantically motivated features

Description

Automating aspects of biocuration through biomedical information extraction could significantly impact biomedical research by enabling greater biocuration throughput and improving the feasibility of a wider scope. An important step in biomedical information extraction systems is named entity recognition (NER), where

Automating aspects of biocuration through biomedical information extraction could significantly impact biomedical research by enabling greater biocuration throughput and improving the feasibility of a wider scope. An important step in biomedical information extraction systems is named entity recognition (NER), where mentions of entities such as proteins and diseases are located within natural-language text and their semantic type is determined. This step is critical for later tasks in an information extraction pipeline, including normalization and relationship extraction. BANNER is a benchmark biomedical NER system using linear-chain conditional random fields and the rich feature set approach. A case study with BANNER locating genes and proteins in biomedical literature is described. The first corpus for disease NER adequate for use as training data is introduced, and employed in a case study of disease NER. The first corpus locating adverse drug reactions (ADRs) in user posts to a health-related social website is also described, and a system to locate and identify ADRs in social media text is created and evaluated. The rich feature set approach to creating NER feature sets is argued to be subject to diminishing returns, implying that additional improvements may require more sophisticated methods for creating the feature set. This motivates the first application of multivariate feature selection with filters and false discovery rate analysis to biomedical NER, resulting in a feature set at least 3 orders of magnitude smaller than the set created by the rich feature set approach. Finally, two novel approaches to NER by modeling the semantics of token sequences are introduced. The first method focuses on the sequence content by using language models to determine whether a sequence resembles entries in a lexicon of entity names or text from an unlabeled corpus more closely. The second method models the distributional semantics of token sequences, determining the similarity between a potential mention and the token sequences from the training data by analyzing the contexts where each sequence appears in a large unlabeled corpus. The second method is shown to improve the performance of BANNER on multiple data sets.

Contributors

Agent

Created

Date Created
2013

152337-Thumbnail Image.png

Study of an epidemic multiple behavior diffusion model in a resource constrained social network

Description

In contemporary society, sustainability and public well-being have been pressing challenges. Some of the important questions are:how can sustainable practices, such as reducing carbon emission, be encouraged? , How can a healthy lifestyle be maintained?Even though individuals are interested, they

In contemporary society, sustainability and public well-being have been pressing challenges. Some of the important questions are:how can sustainable practices, such as reducing carbon emission, be encouraged? , How can a healthy lifestyle be maintained?Even though individuals are interested, they are unable to adopt these behaviors due to resource constraints. Developing a framework to enable cooperative behavior adoption and to sustain it for a long period of time is a major challenge. As a part of developing this framework, I am focusing on methods to understand behavior diffusion over time. Facilitating behavior diffusion with resource constraints in a large population is qualitatively different from promoting cooperation in small groups. Previous work in social sciences has derived conditions for sustainable cooperative behavior in small homogeneous groups. However, how groups of individuals having resource constraint co-operate over extended periods of time is not well understood, and is the focus of my thesis. I develop models to analyze behavior diffusion over time through the lens of epidemic models with the condition that individuals have resource constraint. I introduce an epidemic model SVRS ( Susceptible-Volatile-Recovered-Susceptible) to accommodate multiple behavior adoption. I investigate the longitudinal effects of behavior diffusion by varying different properties of an individual such as resources,threshold and cost of behavior adoption. I also consider how behavior adoption of an individual varies with her knowledge of global adoption. I evaluate my models on several synthetic topologies like complete regular graph, preferential attachment and small-world and make some interesting observations. Periodic injection of early adopters can help in boosting the spread of behaviors and sustain it for a longer period of time. Also, behavior propagation for the classical epidemic model SIRS (Susceptible-Infected-Recovered-Susceptible) does not continue for an infinite period of time as per conventional wisdom. One interesting future direction is to investigate how behavior adoption is affected when number of individuals in a network changes. The affects on behavior adoption when availability of behavior changes with time can also be examined.

Contributors

Agent

Created

Date Created
2013

152361-Thumbnail Image.png

Techniques for soundscape retrieval and synthesis

Description

The study of acoustic ecology is concerned with the manner in which life interacts with its environment as mediated through sound. As such, a central focus is that of the soundscape: the acoustic environment as perceived by a listener. This

The study of acoustic ecology is concerned with the manner in which life interacts with its environment as mediated through sound. As such, a central focus is that of the soundscape: the acoustic environment as perceived by a listener. This dissertation examines the application of several computational tools in the realms of digital signal processing, multimedia information retrieval, and computer music synthesis to the analysis of the soundscape. Namely, these tools include a) an open source software library, Sirens, which can be used for the segmentation of long environmental field recordings into individual sonic events and compare these events in terms of acoustic content, b) a graph-based retrieval system that can use these measures of acoustic similarity and measures of semantic similarity using the lexical database WordNet to perform both text-based retrieval and automatic annotation of environmental sounds, and c) new techniques for the dynamic, realtime parametric morphing of multiple field recordings, informed by the geographic paths along which they were recorded.

Contributors

Agent

Created

Date Created
2013

152370-Thumbnail Image.png

Characterizing retinotopic mapping using conformal geometry and Beltrami coefficient: a preliminary study

Description

Functional magnetic resonance imaging (fMRI) has been widely used to measure the retinotopic organization of early visual cortex in the human brain. Previous studies have identified multiple visual field maps (VFMs) based on statistical analysis of fMRI signals, but the

Functional magnetic resonance imaging (fMRI) has been widely used to measure the retinotopic organization of early visual cortex in the human brain. Previous studies have identified multiple visual field maps (VFMs) based on statistical analysis of fMRI signals, but the resulting geometry has not been fully characterized with mathematical models. This thesis explores using concepts from computational conformal geometry to create a custom software framework for examining and generating quantitative mathematical models for characterizing the geometry of early visual areas in the human brain. The software framework includes a graphical user interface built on top of a selected core conformal flattening algorithm and various software tools compiled specifically for processing and examining retinotopic data. Three conformal flattening algorithms were implemented and evaluated for speed and how well they preserve the conformal metric. All three algorithms performed well in preserving the conformal metric but the speed and stability of the algorithms varied. The software framework performed correctly on actual retinotopic data collected using the standard travelling-wave experiment. Preliminary analysis of the Beltrami coefficient for the early data set shows that selected regions of V1 that contain reasonably smooth eccentricity and polar angle gradients do show significant local conformality, warranting further investigation of this approach for analysis of early and higher visual cortex.

Contributors

Agent

Created

Date Created
2013

152082-Thumbnail Image.png

Coping with selfish behavior in networks using game theory

Description

While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and

While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and selfishly, and maybe cooperate with a small group of other entities only when this form of coalition yields a better return. The interaction among multiple independent decision-makers necessitates the use of game theory, including economic notions related to markets and incentives. In this dissertation, we are interested in modeling, analyzing, addressing network problems caused by the selfish behavior of network entities. First, we study how the selfish behavior of network entities affects the system performance while users are competing for limited resource. For this resource allocation domain, we aim to study the selfish routing problem in networks with fair queuing on links, the relay assignment problem in cooperative networks, and the channel allocation problem in wireless networks. Another important aspect of this dissertation is the study of designing efficient mechanisms to incentivize network entities to achieve certain system objective. For this incentive mechanism domain, we aim to motivate wireless devices to serve as relays for cooperative communication, and to recruit smartphones for crowdsourcing. In addition, we apply different game theoretic approaches to problems in security and privacy domain. For this domain, we aim to analyze how a user could defend against a smart jammer, who can quickly learn about the user's transmission power. We also design mechanisms to encourage mobile phone users to participate in location privacy protection, in order to achieve k-anonymity.

Contributors

Agent

Created

Date Created
2013

152100-Thumbnail Image.png

Decentralized information search

Description

Our research focuses on finding answers through decentralized search, for complex, imprecise queries (such as "Which is the best hair salon nearby?") in situations where there is a spatiotemporal constraint (say answer needs to be found within 15 minutes) associated

Our research focuses on finding answers through decentralized search, for complex, imprecise queries (such as "Which is the best hair salon nearby?") in situations where there is a spatiotemporal constraint (say answer needs to be found within 15 minutes) associated with the query. In general, human networks are good in answering imprecise queries. We try to use the social network of a person to answer his query. Our research aims at designing a framework that exploits the user's social network in order to maximize the answers for a given query. Exploiting an user's social network has several challenges. The major challenge is that the user's immediate social circle may not possess the answer for the given query, and hence the framework designed needs to carry out the query diffusion process across the network. The next challenge involves in finding the right set of seeds to pass the query to in the user's social circle. One other challenge is to incentivize people in the social network to respond to the query and thereby maximize the quality and quantity of replies. Our proposed framework is a mobile application where an individual can either respond to the query or forward it to his friends. We simulated the query diffusion process in three types of graphs: Small World, Random and Preferential Attachment. Given a type of network and a particular query, we carried out the query diffusion by selecting seeds based on attributes of the seed. The main attributes are Topic relevance, Replying or Forwarding probability and Time to Respond. We found that there is a considerable increase in the number of replies attained, even without saturating the user's network, if we adopt an optimal seed selection process. We found the output of the optimal algorithm to be satisfactory as the number of replies received at the interrogator's end was close to three times the number of neighbors an interrogator has. We addressed the challenge of incentivizing people to respond by associating a particular amount of points for each query asked, and awarding the same to people involved in answering the query. Thus, we aim to design a mobile application based on our proposed framework so that it helps in maximizing the replies for the interrogator's query by diffusing the query across his/her social network.

Contributors

Agent

Created

Date Created
2013

152234-Thumbnail Image.png

Smooth path planning using splines for unmanned planetary vehicles

Description

One of the main challenges in planetary robotics is to traverse the shortest path through a set of waypoints. The shortest distance between any two waypoints is a direct linear traversal. Often times, there are physical restrictions that prevent a

One of the main challenges in planetary robotics is to traverse the shortest path through a set of waypoints. The shortest distance between any two waypoints is a direct linear traversal. Often times, there are physical restrictions that prevent a rover form traversing straight to a waypoint. Thus, knowledge of the terrain is needed prior to traversal. The Digital Terrain Model (DTM) provides information about the terrain along with waypoints for the rover to traverse. However, traversing a set of waypoints linearly is burdensome, as the rovers would constantly need to modify their orientation as they successively approach waypoints. Although there are various solutions to this problem, this research paper proposes the smooth traversability of the rover using splines as a quick and easy implementation to traverse a set of waypoints. In addition, a rover was used to compare the smoothness of the linear traversal along with the spline interpolations. The data collected illustrated that spline traversals had a less rate of change in the velocity over time, indicating that the rover performed smoother than with linear paths.

Contributors

Agent

Created

Date Created
2013

152236-Thumbnail Image.png

A cloud based continuous delivery software developing system on Vlab platform

Description

Continuous Delivery, as one of the youngest and most popular member of agile model family, has become a popular concept and method in software development industry recently. Instead of the traditional software development method, which requirements and solutions must be

Continuous Delivery, as one of the youngest and most popular member of agile model family, has become a popular concept and method in software development industry recently. Instead of the traditional software development method, which requirements and solutions must be fixed before starting software developing, it promotes adaptive planning, evolutionary development and delivery, and encourages rapid and flexible response to change. However, several problems prevent Continuous Delivery to be introduced into education world. Taking into the consideration of the barriers, we propose a new Cloud based Continuous Delivery Software Developing System. This system is designed to fully utilize the whole life circle of software developing according to Continuous Delivery concepts in a virtualized environment in Vlab platform.

Contributors

Agent

Created

Date Created
2013