Matching Items (16)
Filtering by

Clear all filters

151754-Thumbnail Image.png
Description
It is commonly known that High Performance Computing (HPC) systems are most frequently used by multiple users for batch job, parallel computations. Less well known, however, are the numerous HPC systems servicing data so sensitive that administrators enforce either a) sequential job processing - only one job at a time

It is commonly known that High Performance Computing (HPC) systems are most frequently used by multiple users for batch job, parallel computations. Less well known, however, are the numerous HPC systems servicing data so sensitive that administrators enforce either a) sequential job processing - only one job at a time on the entire system, or b) physical separation - devoting an entire HPC system to a single project until recommissioned. The driving forces behind this type of security are numerous but share the common origin of data so sensitive that measures above and beyond industry standard are used to ensure information security. This paper presents a network security solution that provides information security above and beyond industry standard, yet still enabling multi-user computations on the system. This paper's main contribution is a mechanism designed to enforce high level time division multiplexing of network access (Time Division Multiple Access, or TDMA) according to security groups. By dividing network access into time windows, interactions between applications over the network can be prevented in an easily verifiable way.
ContributorsFerguson, Joshua (Author) / Gupta, Sandeep Ks (Thesis advisor) / Varsamopoulos, Georgios (Committee member) / Ball, George (Committee member) / Arizona State University (Publisher)
Created2013
152593-Thumbnail Image.png
Description
Mobile apps have improved human lifestyle in various aspects ranging from instant messaging to tele-health. In the current app development paradigm, apps are being developed individually and agnostic of each other. The goal of this thesis is to allow a new world where multiple apps communicate with each other to

Mobile apps have improved human lifestyle in various aspects ranging from instant messaging to tele-health. In the current app development paradigm, apps are being developed individually and agnostic of each other. The goal of this thesis is to allow a new world where multiple apps communicate with each other to achieve synergistic benefits. To enable integration between apps, manual communication between developers is needed, which can be problematic on many levels. In order to promote app integration, a systematic approach towards data sharing between multiple apps is essential. However, current approaches to app integration require large code modifications to reap the benefits of shared data such as requiring developers to provide APIs or use large, invasive middlewares. In this thesis, a data sharing framework was developed providing a non-invasive interface between mobile apps for data sharing and integration. A separate app acts as a registry to allow apps to register database tables to be shared and query this information. Two health monitoring apps were developed to evaluate the sharing framework and different methods of data integration between apps to promote synergistic feedback. The health monitoring apps have shown non-invasive solutions can provide data sharing functionality without large code modifications and manual communication between developers.
ContributorsMilazzo, Joseph (Author) / Gupta, Sandeep K.S. (Thesis advisor) / Varsamopoulos, Georgios (Committee member) / Nelson, Brian (Committee member) / Arizona State University (Publisher)
Created2014
152302-Thumbnail Image.png
Description
The energy consumption of data centers is increasing steadily along with the associ- ated power-density. Approximately half of such energy consumption is attributed to the cooling energy, as a result of which reducing cooling energy along with reducing servers energy consumption in data centers is becoming imperative so as to

The energy consumption of data centers is increasing steadily along with the associ- ated power-density. Approximately half of such energy consumption is attributed to the cooling energy, as a result of which reducing cooling energy along with reducing servers energy consumption in data centers is becoming imperative so as to achieve greening of the data centers. This thesis deals with cooling energy management in data centers running data-processing frameworks. In particular, we propose ther- mal aware scheduling for MapReduce framework and its Hadoop implementation to reduce cooling energy in data centers. Data-processing frameworks run many low- priority batch processing jobs, such as background log analysis, that do not have strict completion time requirements; they can be delayed by a bounded amount of time. Cooling energy savings are possible by being able to temporally spread the workload, and assign it to the computing equipments which reduce the heat recirculation in data center room and therefore the load on the cooling systems. We implement our scheme in Hadoop and performs some experiments using both CPU-intensive and I/O-intensive workload benchmarks in order to evaluate the efficiency of our scheme. The evaluation results highlight that our thermal aware scheduling reduces hot-spots and makes uniform temperature distribution within the data center possible. Sum- marizing the contribution, we incorporated thermal awareness in Hadoop MapReduce framework by enhancing the native scheduler to make it thermally aware, compare the Thermal Aware Scheduler(TAS) with the Hadoop scheduler (FCFS) by running PageRank and TeraSort benchmarks in the BlueTool data center of Impact lab and show that there is reduction in peak temperature and decrease in cooling power using TAS over FCFS scheduler.
ContributorsKole, Sayan (Author) / Gupta, Sandeep (Thesis advisor) / Huang, Dijiang (Committee member) / Varsamopoulos, Georgios (Committee member) / Arizona State University (Publisher)
Created2013
153127-Thumbnail Image.png
Description
Many web search improvements have been developed since the advent of the modern search engine, but one underrepresented area is the application of specific customizations to search results for educational web sites. In order to address this issue and improve the relevance of search results in automated learning environments, this

Many web search improvements have been developed since the advent of the modern search engine, but one underrepresented area is the application of specific customizations to search results for educational web sites. In order to address this issue and improve the relevance of search results in automated learning environments, this work has integrated context-aware search principles with applications of preference based re-ranking and query modifications. This research investigates several aspects of context-aware search principles, specifically context-sensitive and preference based re-ranking of results which take user inputs as to their preferred content, and combines this with search query modifications which automatically search for a variety of modified terms based on the given search query, integrating these results into the overall re-ranking for the context. The result of this work is a novel web search algorithm which could be applied to any online learning environment attempting to collect relevant resources for learning about a given topic. The algorithm has been evaluated through user studies comparing traditional search results to the context-aware results returned through the algorithm for a given topic. These studies explore how this integration of methods could provide improved relevance in the search results returned when compared against other modern search engines.
ContributorsVan Egmond, Eric (Author) / Burleson, Winslow (Thesis advisor) / Syrotiuk, Violet (Thesis advisor) / Nelson, Brian (Committee member) / Arizona State University (Publisher)
Created2014
150062-Thumbnail Image.png
Description
TaxiWorld is a Matlab simulation of a city with a fleet of taxis which operate within it, with the goal of transporting passengers to their destinations. The size of the city, as well as the number of available taxis and the frequency and general locations of fare appearances can all

TaxiWorld is a Matlab simulation of a city with a fleet of taxis which operate within it, with the goal of transporting passengers to their destinations. The size of the city, as well as the number of available taxis and the frequency and general locations of fare appearances can all be set on a scenario-by-scenario basis. The taxis must attempt to service the fares as quickly as possible, by picking each one up and carrying it to its drop-off location. The TaxiWorld scenario is formally modeled using both Decentralized Partially-Observable Markov Decision Processes (Dec-POMDPs) and Multi-agent Markov Decision Processes (MMDPs). The purpose of developing formal models is to learn how to build and use formal Markov models, such as can be given to planners to solve for optimal policies in problem domains. However, finding optimal solutions for Dec-POMDPs is NEXP-Complete, so an empirical algorithm was also developed as an improvement to the method already in use on the simulator, and the methods were compared in identical scenarios to determine which is more effective. The empirical method is of course not optimal - rather, it attempts to simply account for some of the most important factors to achieve an acceptable level of effectiveness while still retaining a reasonable level of computational complexity for online solving.
ContributorsWhite, Christopher (Author) / Kambhampati, Subbarao (Thesis advisor) / Gupta, Sandeep (Committee member) / Varsamopoulos, Georgios (Committee member) / Arizona State University (Publisher)
Created2011
Description
One of the core components of many video games is their artificial intelligence. Through AI, a game can tell stories, generate challenges, and create encounters for the player to overcome. Even though AI has continued to advance through the implementation of neural networks and machine learning, game AI tends to

One of the core components of many video games is their artificial intelligence. Through AI, a game can tell stories, generate challenges, and create encounters for the player to overcome. Even though AI has continued to advance through the implementation of neural networks and machine learning, game AI tends to implement a series of states or decisions instead to give the illusion of intelligence. Despite this limitation, games can still generate a wide range of experiences for the player. The Hybrid Game AI Framework is an AI system that combines the benefits of two commonly used approaches to developing game AI: Behavior Trees and Finite State Machines. Developed in the Unity Game Engine and the C# programming language, this AI Framework represents the research that went into studying modern approaches to game AI and my own attempt at implementing the techniques learned. Object-oriented programming concepts such as inheritance, abstraction, and low coupling are utilized with the intent to create game AI that's easy to implement and expand upon. The final goal was to create a flexible yet structured AI data structure while also minimizing drawbacks by combining Behavior Trees and Finite State Machines.
ContributorsRamirez Cordero, Erick Alberto (Author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134100-Thumbnail Image.png
Description
Can a skill taught in a virtual environment be utilized in the physical world? This idea is explored by creating a Virtual Reality game for the HTC Vive to teach users how to play the drums. The game focuses on developing the user's muscle memory, improving the user's ability to

Can a skill taught in a virtual environment be utilized in the physical world? This idea is explored by creating a Virtual Reality game for the HTC Vive to teach users how to play the drums. The game focuses on developing the user's muscle memory, improving the user's ability to play music as they hear it in their head, and refining the user's sense of rhythm. Several different features were included to achieve this such as a score, different levels, a demo feature, and a metronome. The game was tested for its ability to teach and for its overall enjoyability by using a small sample group. Most participants of the sample group noted that they felt as if their sense of rhythm and drumming skill level would improve by playing the game. Through the findings of this project, it can be concluded that while it should not be considered as a complete replacement for traditional instruction, a virtual environment can be successfully used as a learning aid and practicing tool.
ContributorsDinapoli, Allison (Co-author) / Tuznik, Richard (Co-author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134971-Thumbnail Image.png
Description
This thesis investigates students' learning behaviors through their interaction with an educational technology, Web Programming Grading Assistant. The technology was developed to facilitate the grading of paper-based examinations in large lecture-based classrooms and to provide richer and more meaningful feedback to students. A classroom study was designed and data was

This thesis investigates students' learning behaviors through their interaction with an educational technology, Web Programming Grading Assistant. The technology was developed to facilitate the grading of paper-based examinations in large lecture-based classrooms and to provide richer and more meaningful feedback to students. A classroom study was designed and data was gathered from an undergraduate computer-programming course in the fall of 2016. Analysis of the data revealed that there was a negative correlation between time lag of first review attempt and performance. A survey was developed and disseminated that gave insight into how students felt about the technology and what they normally do to study for programming exams. In conclusion, the knowledge gained in this study aids in the quest to better educate students in computer programming in large in-person classrooms.
ContributorsMurphy, Hannah (Author) / Hsiao, Ihan (Thesis director) / Nelson, Brian (Committee member) / School of Computing, Informatics, and Decision Systems Engineering (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
154470-Thumbnail Image.png
Description
For this master's thesis, an open learner model is integrated with Quinn, a teachable robotic agent developed at Arizona State University. This system is represented as a feedback system, which aims to improve a student’s understanding of a subject. It also helps to understand the effect of the learner model

For this master's thesis, an open learner model is integrated with Quinn, a teachable robotic agent developed at Arizona State University. This system is represented as a feedback system, which aims to improve a student’s understanding of a subject. It also helps to understand the effect of the learner model when it is represented by performance of the teachable agent. The feedback system represents performance of the teachable agent, and not of a student. Data in the feedback system is thus updated according to a student's understanding of the subject. This provides students an opportunity to enhance their understanding of a subject by analyzing their performance. To test the effectiveness of the feedback system, student understanding in two different conditions is analyzed. In the first condition a feedback report is not provided to the students, while in the second condition the feedback report is provided in the form of the agent’s performance.
ContributorsUpadhyay, Abha (Author) / Walker, Erin (Thesis advisor) / Nelson, Brian (Committee member) / Amresh, Ashish (Committee member) / Arizona State University (Publisher)
Created2016
154054-Thumbnail Image.png
Description
The American Heart Association recommended in 1997 the data elements that should be collected from resuscitations in hospitals. (15) Currently, data documentation from resuscitation events in hospitals, termed ‘code blue’ events, utilizes a paper form, which is institution-specific. Problems with data capture and transcription exists, due to the challenges of

The American Heart Association recommended in 1997 the data elements that should be collected from resuscitations in hospitals. (15) Currently, data documentation from resuscitation events in hospitals, termed ‘code blue’ events, utilizes a paper form, which is institution-specific. Problems with data capture and transcription exists, due to the challenges of dynamic documentation of patient, event and outcome variables as the code blue event unfolds.

This thesis is based on the hypothesis that an electronic version of code blue real-time data capture would lead to improved resuscitation data transcription, and enable clinicians to address deficiencies in quality of care. The primary goal of this thesis is to create an iOS based application, primarily designed for iPads, for code blue events at the Mayo Clinic Hospital. The secondary goal is to build an open-source software development framework for converting paper-based hospital protocols into digital format.

The tool created in this study enabled data documentation to be completed electronically rather than on paper for resuscitation outcomes. The tool was evaluated for usability with twenty nurses, the end-users, at Mayo Clinic in Phoenix, Arizona. The results showed the preference of users for the iPad application. Furthermore, a qualitative survey showed the clinicians perceived the electronic version to be more accurate and efficient than paper-based documentation, both of which are essential for an emergency code blue resuscitation procedure.
ContributorsBokhari, Wasif (Author) / Patel, Vimla L. (Thesis advisor) / Amresh, Ashish (Thesis advisor) / Nelson, Brian (Committee member) / Sen, Ayan (Committee member) / Arizona State University (Publisher)
Created2015