Matching Items (8)
Filtering by

Clear all filters

136728-Thumbnail Image.png
Description
This project was centered around designing a processor model (using the C programming language) based on the Coldfire computer architecture that will run on third party software known as Open Virtual Platforms. The end goal is to have a fully functional processor that can run Coldfire instructions and utilize peripheral

This project was centered around designing a processor model (using the C programming language) based on the Coldfire computer architecture that will run on third party software known as Open Virtual Platforms. The end goal is to have a fully functional processor that can run Coldfire instructions and utilize peripheral devices in the same way as the hardware used in the embedded systems lab at ASU. This project would cut down the substantial amount of time students spend commuting to the lab. Having the processor directly at their disposal would also encourage them to spend more time outside of class learning the hardware and familiarizing themselves with development on an embedded micro-controller. The model will be accurate, fast and reliable. These aspects will be achieved through rigorous unit testing and use of the OVP platform which provides instruction accurate simulations at hundreds of MIPS (million instructions per second) for the specified model. The end product was able to accurately simulate a subset of the Coldfire instructions at very high rates.
ContributorsDunning, David Connor (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-12
136364-Thumbnail Image.png
Description
The purpose of this project was to program a Raspberry Pi to be able to play music from both local storage on the Pi and from internet radio stations such as Pandora. The Pi also needs to be able to play various types of file formats, such as mp3 and

The purpose of this project was to program a Raspberry Pi to be able to play music from both local storage on the Pi and from internet radio stations such as Pandora. The Pi also needs to be able to play various types of file formats, such as mp3 and FLAC. Finally, the project is also to be driven by a mobile app running on a smartphone or tablet. To achieve this, a client server design was employed where the Raspberry Pi acts as the server and the mobile app is the client. The server functionality was achieved using a Python script that listens on a socket and calls various executables that handle the different formats of music being played. The client functionality was achieved by programming an Android app in Java that sends encoded commands to the server, which the server decodes and begins playing the music that command dictates. The designs for both the client and server are easily extensible and allow for any future modifications to the project to be easily made.
ContributorsStorto, Michael Olson (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
Description
The Coffee Hutch project is derived from the field of Computer Science and consists of a website, a database, and a mobile application for Android devices. This three-tiered scheme is designed to support a point-of-sale payment system to be integrated with a standalone product dispensing machine. The website contains landing

The Coffee Hutch project is derived from the field of Computer Science and consists of a website, a database, and a mobile application for Android devices. This three-tiered scheme is designed to support a point-of-sale payment system to be integrated with a standalone product dispensing machine. The website contains landing pages which provide navigation and functional capabilities for users. The site also features a variety of PHP web services which communicate with the database using SQL commands. The application, programmed in the Java language, makes use of these services in a simple, utilitarian design aimed at modification of user data stored in the database. This database, developed with MySQL and managed with the phpMyAdmin application, contains limited information in order to maximize speed of read and write accesses from the website and Android app. Together, these three components comprise an effective payment management system model with mobile capabilities. All of the components of this project were built at no cost. The website hosting service is free and the third-party services required (such as Paypal payment services) are simulated. These simulations allowed me to demonstrate the functionality of the three-tiered product without the necessity for monetary supplication. This thesis features every aspect of the development and testing of The Coffee Hutch software components. Requirements for each function of the software are specified in one section, and they are aligned with various pieces of the code in the source documentation. Test cases which address each requirement are outlined in another section of the thesis.
ContributorsHutchison, Caleb Ryan (Author) / Burger, Kevin (Thesis director) / Zhao, Ming (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
161217-Thumbnail Image.png
Description

Among classes in the Computer Science curriculum at Arizona State University, Automata Theory is widely considered to be one of the most difficult. Many Computer Science concepts have strong visual components that make them easier to understand. Binary trees, Dijkstra's algorithm, pointers, and even more basic concepts such as arrays

Among classes in the Computer Science curriculum at Arizona State University, Automata Theory is widely considered to be one of the most difficult. Many Computer Science concepts have strong visual components that make them easier to understand. Binary trees, Dijkstra's algorithm, pointers, and even more basic concepts such as arrays all have very strong visual components. Not only that, but resources for them are abundantly available online. Automata Theory, on the other hand, is the first Computer Science course students encounter that has a significant focus on deep theory. Many
of the concepts can be difficult to visualize, or at least take a lot of effort to do so. Furthermore, visualizers for finite state machines are hard to come by. Because I thoroughly enjoyed learning about Automata Theory and parsers, I wanted to create a program that involved the two. Additionally, I thought creating a program for visualizing automata would help students who struggle with Automata Theory develop a stronger understanding of it.

ContributorsSmith, Andrew (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2021-12
Description

Among classes in the Computer Science curriculum at Arizona State University, Automata Theory is widely considered to be one of the most difficult. Many Computer Science concepts have strong visual components that make them easier to understand. Binary trees, Dijkstra's algorithm, pointers, and even more basic concepts such as arrays

Among classes in the Computer Science curriculum at Arizona State University, Automata Theory is widely considered to be one of the most difficult. Many Computer Science concepts have strong visual components that make them easier to understand. Binary trees, Dijkstra's algorithm, pointers, and even more basic concepts such as arrays all have very strong visual components. Not only that, but resources for them are abundantly available online. Automata Theory, on the other hand, is the first Computer Science course students encounter that has a significant focus on deep theory. Many
of the concepts can be difficult to visualize, or at least take a lot of effort to do so. Furthermore, visualizers for finite state machines are hard to come by. Because I thoroughly enjoyed learning about Automata Theory and parsers, I wanted to create a program that involved the two. Additionally, I thought creating a program for visualizing automata would help students who struggle with Automata Theory develop a stronger understanding of it.

ContributorsSmith, Andrew (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2021-12
Description

Among classes in the Computer Science curriculum at Arizona State University, Automata Theory is widely considered to be one of the most difficult. Many Computer Science concepts have strong visual components that make them easier to understand. Binary trees, Dijkstra's algorithm, pointers, and even more basic concepts such as arrays

Among classes in the Computer Science curriculum at Arizona State University, Automata Theory is widely considered to be one of the most difficult. Many Computer Science concepts have strong visual components that make them easier to understand. Binary trees, Dijkstra's algorithm, pointers, and even more basic concepts such as arrays all have very strong visual components. Not only that, but resources for them are abundantly available online. Automata Theory, on the other hand, is the first Computer Science course students encounter that has a significant focus on deep theory. Many
of the concepts can be difficult to visualize, or at least take a lot of effort to do so. Furthermore, visualizers for finite state machines are hard to come by. Because I thoroughly enjoyed learning about Automata Theory and parsers, I wanted to create a program that involved the two. Additionally, I thought creating a program for visualizing automata would help students who struggle with Automata Theory develop a stronger understanding of it.

ContributorsSmith, Andrew (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2021-12
Description

Among classes in the Computer Science curriculum at Arizona State University, Automata Theory is widely considered to be one of the most difficult. Many Computer Science concepts have strong visual components that make them easier to understand. Binary trees, Dijkstra's algorithm, pointers, and even more basic concepts such as arrays

Among classes in the Computer Science curriculum at Arizona State University, Automata Theory is widely considered to be one of the most difficult. Many Computer Science concepts have strong visual components that make them easier to understand. Binary trees, Dijkstra's algorithm, pointers, and even more basic concepts such as arrays all have very strong visual components. Not only that, but resources for them are abundantly available online. Automata Theory, on the other hand, is the first Computer Science course students encounter that has a significant focus on deep theory. Many of the concepts can be difficult to visualize, or at least take a lot of effort to do so. Furthermore, visualizers for finite state machines are hard to come by. Because I thoroughly enjoyed learning about Automata Theory and parsers, I wanted to create a program that involved the two. Additionally, I thought creating a program for visualizing automata would help students who struggle with Automata Theory develop a stronger understanding of it.

ContributorsSmith, Andrew (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2021-12
187174-Thumbnail Image.png
Description
Alongside the many challenges of Covid-19, the pandemic also disrupted the normal structure of education for students. As classes were being transferred to online formats, computer science students started learning more through constructivism principles rather than the traditionally taught, in-person lectures. This quantitative assessment hopes to determine whether constructivist principles

Alongside the many challenges of Covid-19, the pandemic also disrupted the normal structure of education for students. As classes were being transferred to online formats, computer science students started learning more through constructivism principles rather than the traditionally taught, in-person lectures. This quantitative assessment hopes to determine whether constructivist principles or traditional/visual cognition principles are better for teaching computer science topics. Determinations will be made through a social behavioral experiment teaching pointers to participants. Participants were split into three groups: a control group, a constructivist group, and a visual cognition group. Each group took part in an assessment testing their knowledge retention about pointers after having a lecture based around each teaching method. The assessment evaluated retries per assessment, time per correct answer, time per question, and the average time taken in total. The results of the experiment led to a conclusion that, according to the resulting data, constructivism teaching principles benefited participant scores, and visual cognition teaching principles worsened participant scores. However, a definitive answer of which teaching method is better for computer science could not be made due to insufficient sample size. When reflecting on the first iteration of this experiment, it is clear that future iterations of this experiment would benefit from a higher sample size, an easier assignment for the constructivist group, a feedback survey, and a longer period to experiment.
ContributorsTiruchinapalli, Sai Santosh (Author) / Burger, Kevin (Thesis director) / Hartwell, Leland (Committee member) / Barrett, The Honors College (Contributor)
Created2023-05