Matching Items (1,204)

Filtering by

Clear all filters

149782-Thumbnail Image.png

Electrospinning of bioactive dex-PAA hydrogel fibers

Description

In this work, a novel method is developed for making nano- and micro- fibrous hydrogels capable of preventing the rejection of implanted materials. This is achieved by either (1) mimicking the native cellular environment, to exert fine control over the

In this work, a novel method is developed for making nano- and micro- fibrous hydrogels capable of preventing the rejection of implanted materials. This is achieved by either (1) mimicking the native cellular environment, to exert fine control over the cellular response or (2) acting as a protective barrier, to camouflage the foreign nature of a material and evade recognition by the immune system. Comprehensive characterization and in vitro studies described here provide a foundation for developing substrates for use in clinical applications. Hydrogel dextran and poly(acrylic acid) (PAA) fibers are formed via electrospinning, in sizes ranging from nanometers to microns in diameter. While "as-electrospun" fibers are continuous in length, sonication is used to fragment fibers into short fiber "bristles" and generate nano- and micro- fibrous surface coatings over a wide range of topographies. Dex-PAA fibrous surfaces are chemically modified, and then optimized and characterized for non-fouling and ECM-mimetic properties. The non-fouling nature of fibers is verified, and cell culture studies show differential responses dependent upon chemical, topographical and mechanical properties. Dex-PAA fibers are advantageously unique in that (1) a fine degree of control is possible over three significant parameters critical for modifying cellular response: topography, chemistry and mechanical properties, over a range emulating that of native cellular environments, (2) the innate nature of the material is non-fouling, providing an inert background for adding back specific bioactive functionality, and (3) the fibers can be applied as a surface coating or comprise the scaffold itself. This is the first reported work of dex-PAA hydrogel fibers formed via electrospinning and thermal cross-linking, and unique to this method, no toxic solvents or cross-linking agents are needed to create hydrogels or for surface attachment. This is also the first reported work of using sonication to fragment electrospun hydrogel fibers, and in which surface coatings were made via simple electrostatic interaction and dehydration. These versatile features enable fibrous surface coatings to be applied to virtually any material. Results of this research broadly impact the design of biomaterials which contact cells in the body by directing the consequent cell-material interaction.

Contributors

Agent

Created

Date Created
2011

149689-Thumbnail Image.png

Synthesis and characterization of ordered mesoporous silica with controlled macroscopic morphology for membrane applications

Description

Ordered mesoporous materials have tunable pore sizes between 2 and 50 nm and are characterized by ordered pore structures and high surface areas (~1000 m2/g). This makes them particularly favorable for a number of membrane applications such as protein separation,

Ordered mesoporous materials have tunable pore sizes between 2 and 50 nm and are characterized by ordered pore structures and high surface areas (~1000 m2/g). This makes them particularly favorable for a number of membrane applications such as protein separation, polymer extrusion, nanowire fabrication and membrane reactors. These membranes can be fabricated as top-layers on macroporous supports or as embedded membranes in a dense matrix. The first part of the work deals with the hydrothermal synthesis and water-vapor/oxygen separation properties of supported MCM-48 and a new Al-MCM-48 type membrane for potential use in air conditioning systems. Knudsen-type permeation is observed in these membranes. The combined effect of capillary condensation and the aluminosilicate matrix resulted in the highest separation factor (142) in Al-MCM-48 membranes, with a water vapor permeance of 6×10-8mol/m2Pas. The second part focuses on synthesis of embedded mesoporous silica membranes with helically ordered pores by a novel Counter Diffusion Self-Assembly (CDSA) method. This method is an extension of the interfacial synthesis method for fiber synthesis using tetrabutylorthosilicate (TBOS) and cetyltrimethylammonium bromide (CTAB) as the silica source and surfactant respectively. The initial part of this study determined the effect of TBOS height and humidity on fiber formation. From this study, the range of TBOS heights for best microscopic and macroscopic ordering were established. Next, the CDSA method was used to successfully synthesize membranes, which were characterized to have good support plugging and an ordered pore structure. Factors that influence membrane synthesis and plug microstructure were determined. SEM studies revealed the presence of gaps between the plugs and support pores, which occur due to shrinking of the plug on drying. Development of a novel liquid deposition method to seal these defects constituted the last part of this work. Post sealing, excess silica was removed by etching with hydrofluoric acid. Membrane quality was evaluated at each step using SEM and gas permeation measurements. After surfactant removal by liquid extraction, the membranes exhibited an O2 permeance of 1.65x10-6mol/m2.Pa.s and He/O2 selectivity of 3.30. The successful synthesis of this membrane is an exciting new development in the area of ordered mesoporous membrane technology.

Contributors

Agent

Created

Date Created
2011

Robust margin based classifiers for small sample data

Description

In many classication problems data samples cannot be collected easily, example in drug trials, biological experiments and study on cancer patients. In many situations the data set size is small and there are many outliers. When classifying such data, example

In many classication problems data samples cannot be collected easily, example in drug trials, biological experiments and study on cancer patients. In many situations the data set size is small and there are many outliers. When classifying such data, example cancer vs normal patients the consequences of mis-classication are probably more important than any other data type, because the data point could be a cancer patient or the classication decision could help determine what gene might be over expressed and perhaps a cause of cancer. These mis-classications are typically higher in the presence of outlier data points. The aim of this thesis is to develop a maximum margin classier that is suited to address the lack of robustness of discriminant based classiers (like the Support Vector Machine (SVM)) to noise and outliers. The underlying notion is to adopt and develop a natural loss function that is more robust to outliers and more representative of the true loss function of the data. It is demonstrated experimentally that SVM's are indeed susceptible to outliers and that the new classier developed, here coined as Robust-SVM (RSVM), is superior to all studied classier on the synthetic datasets. It is superior to the SVM in both the synthetic and experimental data from biomedical studies and is competent to a classier derived on similar lines when real life data examples are considered.

Contributors

Agent

Created

Date Created
2011

149501-Thumbnail Image.png

Detecting sybil nodes in static and dynamic networks

Description

Peer-to-peer systems are known to be vulnerable to the Sybil attack. The lack of a central authority allows a malicious user to create many fake identities (called Sybil nodes) pretending to be independent honest nodes. The goal of the malicious

Peer-to-peer systems are known to be vulnerable to the Sybil attack. The lack of a central authority allows a malicious user to create many fake identities (called Sybil nodes) pretending to be independent honest nodes. The goal of the malicious user is to influence the system on his/her behalf. In order to detect the Sybil nodes and prevent the attack, a reputation system is used for the nodes, built through observing its interactions with its peers. The construction makes every node a part of a distributed authority that keeps records on the reputation and behavior of the nodes. Records of interactions between nodes are broadcast by the interacting nodes and honest reporting proves to be a Nash Equilibrium for correct (non-Sybil) nodes. In this research is argued that in realistic communication schedule scenarios, simple graph-theoretic queries such as the computation of Strongly Connected Components and Densest Subgraphs, help in exposing those nodes most likely to be Sybil, which are then proved to be Sybil or not through a direct test executed by some peers.

Contributors

Agent

Created

Date Created
2010

149503-Thumbnail Image.png

Stereo based visual odometry

Description

The exponential rise in unmanned aerial vehicles has necessitated the need for accurate pose estimation under any extreme conditions. Visual Odometry (VO) is the estimation of position and orientation of a vehicle based on analysis of a sequence of images

The exponential rise in unmanned aerial vehicles has necessitated the need for accurate pose estimation under any extreme conditions. Visual Odometry (VO) is the estimation of position and orientation of a vehicle based on analysis of a sequence of images captured from a camera mounted on it. VO offers a cheap and relatively accurate alternative to conventional odometry techniques like wheel odometry, inertial measurement systems and global positioning system (GPS). This thesis implements and analyzes the performance of a two camera based VO called Stereo based visual odometry (SVO) in presence of various deterrent factors like shadows, extremely bright outdoors, wet conditions etc... To allow the implementation of VO on any generic vehicle, a discussion on porting of the VO algorithm to android handsets is presented too. The SVO is implemented in three steps. In the first step, a dense disparity map for a scene is computed. To achieve this we utilize sum of absolute differences technique for stereo matching on rectified and pre-filtered stereo frames. Epipolar geometry is used to simplify the matching problem. The second step involves feature detection and temporal matching. Feature detection is carried out by Harris corner detector. These features are matched between two consecutive frames using the Lucas-Kanade feature tracker. The 3D co-ordinates of these matched set of features are computed from the disparity map obtained from the first step and are mapped into each other by a translation and a rotation. The rotation and translation is computed using least squares minimization with the aid of Singular Value Decomposition. Random Sample Consensus (RANSAC) is used for outlier detection. This comprises the third step. The accuracy of the algorithm is quantified based on the final position error, which is the difference between the final position computed by the SVO algorithm and the final ground truth position as obtained from the GPS. The SVO showed an error of around 1% under normal conditions for a path length of 60 m and around 3% in bright conditions for a path length of 130 m. The algorithm suffered in presence of shadows and vibrations, with errors of around 15% and path lengths of 20 m and 100 m respectively.

Contributors

Agent

Created

Date Created
2010

149505-Thumbnail Image.png

Growth of gaN nanowires: a study using in situ transmission electron microscopy

Description

Owing to their special characteristics, group III-Nitride semiconductors have attracted special attention for their application in a wide range of optoelectronic devices. Of particular interest are their direct and wide band gaps that span from ultraviolet to the infrared wavelengths.

Owing to their special characteristics, group III-Nitride semiconductors have attracted special attention for their application in a wide range of optoelectronic devices. Of particular interest are their direct and wide band gaps that span from ultraviolet to the infrared wavelengths. In addition, their stronger bonds relative to the other compound semiconductors makes them thermally more stable, which provides devices with longer life time. However, the lattice mismatch between these semiconductors and their substrates cause the as-grown films to have high dislocation densities, reducing the life time of devices that contain these materials. One possible solution for this problem is to substitute single crystal semiconductor nanowires for epitaxial films. Due to their dimensionality, semiconductor nanowires typically have stress-free surfaces and better physical properties. In order to employ semiconductor nanowires as building blocks for nanoscale devices, a precise control of the nanowires' crystallinity, morphology, and chemistry is necessary. This control can be achieved by first developing a deeper understanding of the processes involved in the synthesis of nanowires, and then by determining the effects of temperature and pressure on their growth. This dissertation focuses on understanding of the growth processes involved in the formation of GaN nanowires. Nucleation and growth events were observed in situ and controlled in real-time using an environmental transmission electron microscope. These observations provide a satisfactory elucidation of the underlying growth mechanism during the formation of GaN nanowires. Nucleation of these nanowires appears to follow the vapor-liquid-solid mechanism. However, nanowire growth is found to follow both the vapor-liquid-solid and vapor-solid-solid mechanisms. Direct evidence of the effects of III/V ratio on nanowire growth is also reported, which provides important information for tailoring the synthesis of GaN nanowires. These findings suggest in situ electron microscopy is a powerful tool to understand the growth of GaN nanowires and also that these experimental approach can be extended to study other binary semiconductor compound such as GaP, GaAs, and InP, or even ternary compounds such as InGaN. However, further experimental work is required to fully elucidate the kinetic effects on the growth process. A better control of the growth parameters is also recommended.

Contributors

Agent

Created

Date Created
2010

149695-Thumbnail Image.png

Materialized views over heterogeneous structured data sources in a distributed event stream processing environment

Description

Data-driven applications are becoming increasingly complex with support for processing events and data streams in a loosely-coupled distributed environment, providing integrated access to heterogeneous data sources such as relational databases and XML documents. This dissertation explores the use of materialized

Data-driven applications are becoming increasingly complex with support for processing events and data streams in a loosely-coupled distributed environment, providing integrated access to heterogeneous data sources such as relational databases and XML documents. This dissertation explores the use of materialized views over structured heterogeneous data sources to support multiple query optimization in a distributed event stream processing framework that supports such applications involving various query expressions for detecting events, monitoring conditions, handling data streams, and querying data. Materialized views store the results of the computed view so that subsequent access to the view retrieves the materialized results, avoiding the cost of recomputing the entire view from base data sources. Using a service-based metadata repository that provides metadata level access to the various language components in the system, a heuristics-based algorithm detects the common subexpressions from the queries represented in a mixed multigraph model over relational and structured XML data sources. These common subexpressions can be relational, XML or a hybrid join over the heterogeneous data sources. This research examines the challenges in the definition and materialization of views when the heterogeneous data sources are retained in their native format, instead of converting the data to a common model. LINQ serves as the materialized view definition language for creating the view definitions. An algorithm is introduced that uses LINQ to create a data structure for the persistence of these hybrid views. Any changes to base data sources used to materialize views are captured and mapped to a delta structure. The deltas are then streamed within the framework for use in the incremental update of the materialized view. Algorithms are presented that use the magic sets query optimization approach to both efficiently materialize the views and to propagate the relevant changes to the views for incremental maintenance. Using representative scenarios over structured heterogeneous data sources, an evaluation of the framework demonstrates an improvement in performance. Thus, defining the LINQ-based materialized views over heterogeneous structured data sources using the detected common subexpressions and incrementally maintaining the views by using magic sets enhances the efficiency of the distributed event stream processing environment.

Contributors

Agent

Created

Date Created
2011

149703-Thumbnail Image.png

Adaptive decentralized routing and detection of overlapping communities

Description

This dissertation studies routing in small-world networks such as grids plus long-range edges and real networks. Kleinberg showed that geography-based greedy routing in a grid-based network takes an expected number of steps polylogarithmic in the network size, thus justifying empirical

This dissertation studies routing in small-world networks such as grids plus long-range edges and real networks. Kleinberg showed that geography-based greedy routing in a grid-based network takes an expected number of steps polylogarithmic in the network size, thus justifying empirical efficiency observed beginning with Milgram. A counterpart for the grid-based model is provided; it creates all edges deterministically and shows an asymptotically matching upper bound on the route length. The main goal is to improve greedy routing through a decentralized machine learning process. Two considered methods are based on weighted majority and an algorithm of de Farias and Megiddo, both learning from feedback using ensembles of experts. Tests are run on both artificial and real networks, with decentralized spectral graph embedding supplying geometric information for real networks where it is not intrinsically available. An important measure analyzed in this work is overpayment, the difference between the cost of the method and that of the shortest path. Adaptive routing overtakes greedy after about a hundred or fewer searches per node, consistently across different network sizes and types. Learning stabilizes, typically at overpayment of a third to a half of that by greedy. The problem is made more difficult by eliminating the knowledge of neighbors' locations or by introducing uncooperative nodes. Even under these conditions, the learned routes are usually better than the greedy routes. The second part of the dissertation is related to the community structure of unannotated networks. A modularity-based algorithm of Newman is extended to work with overlapping communities (including considerably overlapping communities), where each node locally makes decisions to which potential communities it belongs. To measure quality of a cover of overlapping communities, a notion of a node contribution to modularity is introduced, and subsequently the notion of modularity is extended from partitions to covers. The final part considers a problem of network anonymization, mostly by the means of edge deletion. The point of interest is utility preservation. It is shown that a concentration on the preservation of routing abilities might damage the preservation of community structure, and vice versa.

Contributors

Agent

Created

Date Created
2011

149710-Thumbnail Image.png

Optimization of ionic conductivity in doped ceria using density functional theory and kinetic lattice Monte Carlo

Description

Fuel cells, particularly solid oxide fuel cells (SOFC), are important for the future of greener and more efficient energy sources. Although SOFCs have been in existence for over fifty years, they have not been deployed extensively because they need to

Fuel cells, particularly solid oxide fuel cells (SOFC), are important for the future of greener and more efficient energy sources. Although SOFCs have been in existence for over fifty years, they have not been deployed extensively because they need to be operated at a high temperature (∼1000 °C), are expensive, and have slow response to changes in energy demands. One important need for commercialization of SOFCs is a lowering of their operating temperature, which requires an electrolyte that can operate at lower temperatures. Doped ceria is one such candidate. For this dissertation work I have studied different types of doped ceria to understand the mechanism of oxygen vacancy diffusion through the bulk. Doped ceria is important because they have high ionic conductivities thus making them attractive candidates for the electrolytes of solid oxide fuel cells. In particular, I have studied how the ionic conductivities are improved in these doped materials by studying the oxygen-vacancy formations and migrations. In this dissertation I describe the application of density functional theory (DFT) and Kinetic Lattice Monte Carlo (KLMC) simulations to calculate the vacancy diffusion and ionic conductivities in doped ceria. The dopants used are praseodymium (Pr), gadolinium (Gd), and neodymium (Nd), all belonging to the lanthanide series. The activation energies for vacancy migration between different nearest neighbor (relative to the dopant) positions were calculated using the commercial DFT code VASP (Vienna Ab-initio Simulation Package). These activation energies were then used as inputs to the KLMC code that I co-developed. The KLMC code was run for different temperatures (673 K to 1073 K) and for different dopant concentrations (0 to 40%). These simulations have resulted in the prediction of dopant concentrations for maximum ionic conductivity at a given temperature.

Contributors

Agent

Created

Date Created
2011

149714-Thumbnail Image.png

Analyzing the dynamics of communication in online social networks

Description

This thesis deals with the analysis of interpersonal communication dynamics in online social networks and social media. Our central hypothesis is that communication dynamics between individuals manifest themselves via three key aspects: the information that is the content of communication,

This thesis deals with the analysis of interpersonal communication dynamics in online social networks and social media. Our central hypothesis is that communication dynamics between individuals manifest themselves via three key aspects: the information that is the content of communication, the social engagement i.e. the sociological framework emergent of the communication process, and the channel i.e. the media via which communication takes place. Communication dynamics have been of interest to researchers from multi-faceted domains over the past several decades. However, today we are faced with several modern capabilities encompassing a host of social media websites. These sites feature variegated interactional affordances, ranging from blogging, micro-blogging, sharing media elements as well as a rich set of social actions such as tagging, voting, commenting and so on. Consequently, these communication tools have begun to redefine the ways in which we exchange information, our modes of social engagement, and mechanisms of how the media characteristics impact our interactional behavior. The outcomes of this research are manifold. We present our contributions in three parts, corresponding to the three key organizing ideas. First, we have observed that user context is key to characterizing communication between a pair of individuals. However interestingly, the probability of future communication seems to be more sensitive to the context compared to the delay, which appears to be rather habitual. Further, we observe that diffusion of social actions in a network can be indicative of future information cascades; that might be attributed to social influence or homophily depending on the nature of the social action. Second, we have observed that different modes of social engagement lead to evolution of groups that have considerable predictive capability in characterizing external-world temporal occurrences, such as stock market dynamics as well as collective political sentiments. Finally, characterization of communication on rich media sites have shown that conversations that are deemed "interesting" appear to have consequential impact on the properties of the social network they are associated with: in terms of degree of participation of the individuals in future conversations, thematic diffusion as well as emergent cohesiveness in activity among the concerned participants in the network. Based on all these outcomes, we believe that this research can make significant contribution into a better understanding of how we communicate online and how it is redefining our collective sociological behavior.

Contributors

Agent

Created

Date Created
2011