Matching Items (18)
Filtering by

Clear all filters

131525-Thumbnail Image.png
Description
The original version of Helix, the one I pitched when first deciding to make a video game
for my thesis, is an action-platformer, with the intent of metroidvania-style progression
and an interconnected world map.

The current version of Helix is a turn based role-playing game, with the intent of roguelike
gameplay and a dark

The original version of Helix, the one I pitched when first deciding to make a video game
for my thesis, is an action-platformer, with the intent of metroidvania-style progression
and an interconnected world map.

The current version of Helix is a turn based role-playing game, with the intent of roguelike
gameplay and a dark fantasy theme. We will first be exploring the challenges that came
with programming my own game - not quite from scratch, but also without a prebuilt
engine - then transition into game design and how Helix has evolved from its original form
to what we see today.
ContributorsDiscipulo, Isaiah K (Author) / Meuth, Ryan (Thesis director) / Kobayashi, Yoshihiro (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131529-Thumbnail Image.png
Description
RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to

RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to properly dispose of the material. Some searches will show locations of facilities near users that collect certain materials and dispose of the materials properly. This is a full stack software project that explores open source software and APIs, UI/UX design, and iOS development.
ContributorsTran, Nikki (Author) / Ganesh, Tirupalavanam (Thesis director) / Meuth, Ryan (Committee member) / Watts College of Public Service & Community Solut (Contributor) / Department of Information Systems (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
135380-Thumbnail Image.png
Description
Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide

Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide a rigorous, collaborative, and relevant academic program emphasizing an innovative, problem-based curriculum that develops literacy in the sciences, mathematics, and the arts, thus cultivating critical thinkers, creative problem-solvers, and compassionate citizens, who are able to thrive in our increasingly complex and technological communities." Computational thinking is an important part in developing a future problem solver Bioscience High School is looking to produce. Bioscience High School is unique in the fact that every student has a computer available for him or her to use. Therefore, it makes complete sense for the school to add computer science to their curriculum because one of the school's goals is to be able to utilize their resources to their full potential. However, the school's attempt at computer science integration falls short due to the lack of expertise amongst the math and science teachers. The lack of training and support has postponed the development of the program and they are desperately in need of someone with expertise in the field to help reboot the program. As a result, I've decided to create a course that is focused on teaching students the concepts of computational thinking and its application through Scratch and Arduino programming.
ContributorsLiu, Deming (Author) / Meuth, Ryan (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136728-Thumbnail Image.png
Description
This project was centered around designing a processor model (using the C programming language) based on the Coldfire computer architecture that will run on third party software known as Open Virtual Platforms. The end goal is to have a fully functional processor that can run Coldfire instructions and utilize peripheral

This project was centered around designing a processor model (using the C programming language) based on the Coldfire computer architecture that will run on third party software known as Open Virtual Platforms. The end goal is to have a fully functional processor that can run Coldfire instructions and utilize peripheral devices in the same way as the hardware used in the embedded systems lab at ASU. This project would cut down the substantial amount of time students spend commuting to the lab. Having the processor directly at their disposal would also encourage them to spend more time outside of class learning the hardware and familiarizing themselves with development on an embedded micro-controller. The model will be accurate, fast and reliable. These aspects will be achieved through rigorous unit testing and use of the OVP platform which provides instruction accurate simulations at hundreds of MIPS (million instructions per second) for the specified model. The end product was able to accurately simulate a subset of the Coldfire instructions at very high rates.
ContributorsDunning, David Connor (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-12
136364-Thumbnail Image.png
Description
The purpose of this project was to program a Raspberry Pi to be able to play music from both local storage on the Pi and from internet radio stations such as Pandora. The Pi also needs to be able to play various types of file formats, such as mp3 and

The purpose of this project was to program a Raspberry Pi to be able to play music from both local storage on the Pi and from internet radio stations such as Pandora. The Pi also needs to be able to play various types of file formats, such as mp3 and FLAC. Finally, the project is also to be driven by a mobile app running on a smartphone or tablet. To achieve this, a client server design was employed where the Raspberry Pi acts as the server and the mobile app is the client. The server functionality was achieved using a Python script that listens on a socket and calls various executables that handle the different formats of music being played. The client functionality was achieved by programming an Android app in Java that sends encoded commands to the server, which the server decodes and begins playing the music that command dictates. The designs for both the client and server are easily extensible and allow for any future modifications to the project to be easily made.
ContributorsStorto, Michael Olson (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
133397-Thumbnail Image.png
Description
Students learn in various ways \u2014 visualization, auditory, memorizing, or making analogies. Traditional lecturing in engineering courses and the learning styles of engineering students are inharmonious causing students to be at a disadvantage based on their learning style (Felder & Silverman, 1988). My study analyzes the traditional approach to learning

Students learn in various ways \u2014 visualization, auditory, memorizing, or making analogies. Traditional lecturing in engineering courses and the learning styles of engineering students are inharmonious causing students to be at a disadvantage based on their learning style (Felder & Silverman, 1988). My study analyzes the traditional approach to learning coding skills which is unnatural to engineering students with no previous exposure and examining if visual learning enhances introductory computer science education. Visual and text-based learning are evaluated to determine how students learn introductory coding skills and associated problem solving skills. My study was conducted to observe how the two types of learning aid the students in learning how to problem solve as well as how much knowledge can be obtained in a short period of time. The application used for visual learning was Scratch and Repl.it was used for text-based learning. Two exams were made to measure the progress made by each student. The topics covered by the exam were initialization, variable reassignment, output, if statements, if else statements, nested if statements, logical operators, arrays/lists, while loop, type casting, functions, object orientation, and sorting. Analysis of the data collected in the study allow us to observe whether the traditional method of teaching programming or block-based programming is more beneficial and in what topics of introductory computer science concepts.
ContributorsVidaure, Destiny Vanessa (Author) / Meuth, Ryan (Thesis director) / Yang, Yezhou (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134079-Thumbnail Image.png
Description
This project is a full integrated development environment implementing the LEGv8 assembly language standard, to be used in classroom settings. The LEGv8 assembly language is defined by the ARM edition of "Computer Organization and Design: The Hardware/Software Interface" by David A. Patterson and John L. Hennessy as a more approachable

This project is a full integrated development environment implementing the LEGv8 assembly language standard, to be used in classroom settings. The LEGv8 assembly language is defined by the ARM edition of "Computer Organization and Design: The Hardware/Software Interface" by David A. Patterson and John L. Hennessy as a more approachable alternative to the full ARMv8 instruction set. The MIPS edition of that same book is used in the Computer Organization course at ASU. This class makes heavy use of the "MARS" MIPS simulator, which allows students to write and run their own MIPS assembly programs. Writing assembly language programs is a key component of the course, as assembly programs have many design difficulties as compared to a high-level language. This project is a fork of the MARS project. The interface and functionality remain largely the same aside from the change to supporting the LEGv8 syntax and instruction set. Faculty used to the MARS environment from teaching Computer Organization should only have to adjust to the new language standard, as the editor and environment will be familiar. The available instructions are basic arithmetic/logical operations, memory interaction, and flow control. Both floating-point and integer operations are supported, with limited support of conditional execution. Only branches can be conditionally executed, per LEGv8. Directives remain in the format supported by MARS, as documentation on ARM-style directives is both sparse and agreeable to this standard. The operating system functions supported by the MARS simulator also remain, as there is no generally standardized requirements for operating system interactions.
ContributorsWhite, Josiah Jeremiah (Author) / Meuth, Ryan (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
Description

The Oasis app is a self-appraisal tool for potential or current problem gamblers to take control of their habits by providing periodic check-in notifications during a gambling session and allowing users to see their progress over time. Oasis is backed by substantial background research surrounding addiction intervention methods, especially in

The Oasis app is a self-appraisal tool for potential or current problem gamblers to take control of their habits by providing periodic check-in notifications during a gambling session and allowing users to see their progress over time. Oasis is backed by substantial background research surrounding addiction intervention methods, especially in the field of self-appraisal messaging, and applies this messaging in a familiar mobile notification form that can effectively change user’s behavior. User feedback was collected and used to improve the app, and the results show a promising tool that could help those who need it in the future.

ContributorsBlunt, Thomas (Author) / Meuth, Ryan (Thesis director) / McDaniel, Troy (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description

Among classes in the Computer Science curriculum at Arizona State University, Automata Theory is widely considered to be one of the most difficult. Many Computer Science concepts have strong visual components that make them easier to understand. Binary trees, Dijkstra's algorithm, pointers, and even more basic concepts such as arrays

Among classes in the Computer Science curriculum at Arizona State University, Automata Theory is widely considered to be one of the most difficult. Many Computer Science concepts have strong visual components that make them easier to understand. Binary trees, Dijkstra's algorithm, pointers, and even more basic concepts such as arrays all have very strong visual components. Not only that, but resources for them are abundantly available online. Automata Theory, on the other hand, is the first Computer Science course students encounter that has a significant focus on deep theory. Many of the concepts can be difficult to visualize, or at least take a lot of effort to do so. Furthermore, visualizers for finite state machines are hard to come by. Because I thoroughly enjoyed learning about Automata Theory and parsers, I wanted to create a program that involved the two. Additionally, I thought creating a program for visualizing automata would help students who struggle with Automata Theory develop a stronger understanding of it.

ContributorsSmith, Andrew (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2021-12
Description
In response to the lasting negative effects of the COVID-19 pandemic on driver’s education and road safety, this thesis is intended to create an iOS application that recognizes and reports on poor driving habits. The end user opens the application to start a trip, the application records GPS data and

In response to the lasting negative effects of the COVID-19 pandemic on driver’s education and road safety, this thesis is intended to create an iOS application that recognizes and reports on poor driving habits. The end user opens the application to start a trip, the application records GPS data and information from APIs containing environmental information in a consistent, synchronized manner, patterns in said data are analyzed by the application to flag events representing different issues when driving, and when the user presses a button to end the trip, a report of the events is presented. The project was developed using a complete design process, including a full Research and Development process and detailed design documentation. Separate components of the application were developed in an iterative structure, with GPS information, the data synchronization system, API parsing and recording, data analysis, and feedback all being designed and tested separately. The application ultimately reached late beta status, with target stability and test results being achieved in typical use cases.
ContributorsBronzi, John (Author) / Meuth, Ryan (Thesis director) / Yee, Richard (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-12