Matching Items (43)

Filtering by

Clear all filters

132566-Thumbnail Image.png

Developing a Curriculum to Prepare Software Engineers for the Technical Interview Process

Description

ASU’s Software Engineering (SER) program adequately prepares students for what happens after they become a developer, but there is no standard for preparing students to secure a job post-graduation in the first place. This project creates and executes a supplemental

ASU’s Software Engineering (SER) program adequately prepares students for what happens after they become a developer, but there is no standard for preparing students to secure a job post-graduation in the first place. This project creates and executes a supplemental curriculum to prepare students for the technical interview process. The trial run of the curriculum was received positively by study participants, who experienced an increase in confidence over the duration of the workshop.

Contributors

Agent

Created

Date Created
2019-05

132967-Thumbnail Image.png

Learning Generalized Heuristics Using Deep Neural Networks

Description

Classical planning is a field of Artificial Intelligence concerned with allowing autonomous agents to make reasonable decisions in complex environments. This work investigates
the application of deep learning and planning techniques, with the aim of constructing generalized plans capable of

Classical planning is a field of Artificial Intelligence concerned with allowing autonomous agents to make reasonable decisions in complex environments. This work investigates
the application of deep learning and planning techniques, with the aim of constructing generalized plans capable of solving multiple problem instances. We construct a Deep Neural Network that, given an abstract problem state, predicts both (i) the best action to be taken from that state and (ii) the generalized “role” of the object being manipulated. The neural network was tested on two classical planning domains: the blocks world domain and the logistic domain. Results indicate that neural networks are capable of making such
predictions with high accuracy, indicating a promising new framework for approaching generalized planning problems.

Contributors

Created

Date Created
2019-05

Enhancing Student Learning Through Adaptive Sentence Generation

Description

Education of any skill based subject, such as mathematics or language, involves a significant amount of repetition and pratice. According to the National Survey of Student Engagements, students spend on average 17 hours per week reviewing and practicing material previously

Education of any skill based subject, such as mathematics or language, involves a significant amount of repetition and pratice. According to the National Survey of Student Engagements, students spend on average 17 hours per week reviewing and practicing material previously learned in a classroom, with higher performing students showing a tendency to spend more time practicing. As such, learning software has emerged in the past several decades focusing on providing a wide range of examples, practice problems, and situations for users to exercise their skills. Notably, math students have benefited from software that procedurally generates a virtually infinite number of practice problems and their corresponding solutions. This allows for instantaneous feedback and automatic generation of tests and quizzes. Of course, this is only possible because software is capable of generating and verifying a virtually endless supply of sample problems across a wide range of topics within mathematics. While English learning software has progressed in a similar manner, it faces a series of hurdles distinctly different from those of mathematics. In particular, there is a wide range of exception cases present in English grammar. Some words have unique spellings for their plural forms, some words have identical spelling for plural forms, and some words are conjugated differently for only one particular tense or person-of-speech. These issues combined make the problem of generating grammatically correct sentences complicated. To compound to this problem, the grammar rules in English are vast, and often depend on the context in which they are used. Verb-tense agreement (e.g. "I eat" vs "he eats"), and conjugation of irregular verbs (e.g. swim -> swam) are common examples. This thesis presents an algorithm designed to randomly generate a virtually infinite number of practice problems for students of English as a second language. This approach differs from other generation approaches by generating based on a context set by educators, so that problems can be generated in the context of what students are currently learning. The algorithm is validated through a study in which over 35 000 sentences generated by the algorithm are verified by multiple grammar checking algorithms, and a subset of the sentences are validated against 3 education standards by a subject matter expert in the field. The study found that this approach has a significantly reduced grammar error ratio compared to other generation algorithms, and shows potential where context specification is concerned.

Contributors

Agent

Created

Date Created
2016-05

152234-Thumbnail Image.png

Smooth path planning using splines for unmanned planetary vehicles

Description

One of the main challenges in planetary robotics is to traverse the shortest path through a set of waypoints. The shortest distance between any two waypoints is a direct linear traversal. Often times, there are physical restrictions that prevent a

One of the main challenges in planetary robotics is to traverse the shortest path through a set of waypoints. The shortest distance between any two waypoints is a direct linear traversal. Often times, there are physical restrictions that prevent a rover form traversing straight to a waypoint. Thus, knowledge of the terrain is needed prior to traversal. The Digital Terrain Model (DTM) provides information about the terrain along with waypoints for the rover to traverse. However, traversing a set of waypoints linearly is burdensome, as the rovers would constantly need to modify their orientation as they successively approach waypoints. Although there are various solutions to this problem, this research paper proposes the smooth traversability of the rover using splines as a quick and easy implementation to traverse a set of waypoints. In addition, a rover was used to compare the smoothness of the linear traversal along with the spline interpolations. The data collected illustrated that spline traversals had a less rate of change in the velocity over time, indicating that the rover performed smoother than with linear paths.

Contributors

Agent

Created

Date Created
2013

152179-Thumbnail Image.png

Model-based design, simulation and automatic code generation for embedded systems and robotic applications

Description

As the complexity of robotic systems and applications grows rapidly, development of high-performance, easy to use, and fully integrated development environments for those systems is inevitable. Model-Based Design (MBD) of dynamic systems using engineering software such as Simulink® from MathWorks®,

As the complexity of robotic systems and applications grows rapidly, development of high-performance, easy to use, and fully integrated development environments for those systems is inevitable. Model-Based Design (MBD) of dynamic systems using engineering software such as Simulink® from MathWorks®, SciCos from Metalau team and SystemModeler® from Wolfram® is quite popular nowadays. They provide tools for modeling, simulation, verification and in some cases automatic code generation for desktop applications, embedded systems and robots. For real-world implementation of models on the actual hardware, those models should be converted into compilable machine code either manually or automatically. Due to the complexity of robotic systems, manual code translation from model to code is not a feasible optimal solution so we need to move towards automated code generation for such systems. MathWorks® offers code generation facilities called Coder® products for this purpose. However in order to fully exploit the power of model-based design and code generation tools for robotic applications, we need to enhance those software systems by adding and modifying toolboxes, files and other artifacts as well as developing guidelines and procedures. In this thesis, an effort has been made to propose a guideline as well as a Simulink® library, StateFlow® interface API and a C/C++ interface API to complete this toolchain for NAO humanoid robots. Thus the model of the hierarchical control architecture can be easily and properly converted to code and built for implementation.

Contributors

Agent

Created

Date Created
2013

154026-Thumbnail Image.png

Moving obstacle avoidance for unmanned aerial vehicles

Description

There has been a vast increase in applications of Unmanned Aerial Vehicles (UAVs) in civilian domains. To operate in the civilian airspace, a UAV must be able to sense and avoid both static and moving obstacles for flight safety. While

There has been a vast increase in applications of Unmanned Aerial Vehicles (UAVs) in civilian domains. To operate in the civilian airspace, a UAV must be able to sense and avoid both static and moving obstacles for flight safety. While indoor and low-altitude environments are mainly occupied by static obstacles, risks in space of higher altitude primarily come from moving obstacles such as other aircraft or flying vehicles in the airspace. Therefore, the ability to avoid moving obstacles becomes a necessity

for Unmanned Aerial Vehicles.

Towards enabling a UAV to autonomously sense and avoid moving obstacles, this thesis makes the following contributions. Initially, an image-based reactive motion planner is developed for a quadrotor to avoid a fast approaching obstacle. Furthermore, A Dubin’s curve based geometry method is developed as a global path planner for a fixed-wing UAV to avoid collisions with aircraft. The image-based method is unable to produce an optimal path and the geometry method uses a simplified UAV model. To compensate

these two disadvantages, a series of algorithms built upon the Closed-Loop Rapid Exploratory Random Tree are developed as global path planners to generate collision avoidance paths in real time. The algorithms are validated in Software-In-the-Loop (SITL) and Hardware-In-the-Loop (HIL) simulations using a fixed-wing UAV model and in real flight experiments using quadrotors. It is observed that the algorithm enables a UAV to avoid moving obstacles approaching to it with different directions and speeds.

Contributors

Agent

Created

Date Created
2015

154497-Thumbnail Image.png

Development and analysis of stochastic boundary coverage strategies for multi-robot systems

Description

Robotic technology is advancing to the point where it will soon be feasible to deploy massive populations, or swarms, of low-cost autonomous robots to collectively perform tasks over large domains and time scales. Many of these tasks will require

Robotic technology is advancing to the point where it will soon be feasible to deploy massive populations, or swarms, of low-cost autonomous robots to collectively perform tasks over large domains and time scales. Many of these tasks will require the robots to allocate themselves around the boundaries of regions or features of interest and achieve target objectives that derive from their resulting spatial configurations, such as forming a connected communication network or acquiring sensor data around the entire boundary. We refer to this spatial allocation problem as boundary coverage. Possible swarm tasks that will involve boundary coverage include cooperative load manipulation for applications in construction, manufacturing, and disaster response.

In this work, I address the challenges of controlling a swarm of resource-constrained robots to achieve boundary coverage, which I refer to as the problem of stochastic boundary coverage. I first examined an instance of this behavior in the biological phenomenon of group food retrieval by desert ants, and developed a hybrid dynamical system model of this process from experimental data. Subsequently, with the aid of collaborators, I used a continuum abstraction of swarm population dynamics, adapted from a modeling framework used in chemical kinetics, to derive stochastic robot control policies that drive a swarm to target steady-state allocations around multiple boundaries in a way that is robust to environmental variations.

Next, I determined the statistical properties of the random graph that is formed by a group of robots, each with the same capabilities, that have attached to a boundary at random locations. I also computed the probability density functions (pdfs) of the robot positions and inter-robot distances for this case.

I then extended this analysis to cases in which the robots have heterogeneous communication/sensing radii and attach to a boundary according to non-uniform, non-identical pdfs. I proved that these more general coverage strategies generate random graphs whose probability of connectivity is Sharp-P Hard to compute. Finally, I investigated possible approaches to validating our boundary coverage strategies in multi-robot simulations with realistic Wi-fi communication.

Contributors

Agent

Created

Date Created
2016

151780-Thumbnail Image.png

A modular ROS package for linear temporal logic based motion planning

Description

Objective of this thesis project is to build a prototype using Linear Temporal Logic specifications for generating a 2D motion plan commanding an iRobot to fulfill the specifications. This thesis project was created for Cyber Physical Systems Lab in Arizona

Objective of this thesis project is to build a prototype using Linear Temporal Logic specifications for generating a 2D motion plan commanding an iRobot to fulfill the specifications. This thesis project was created for Cyber Physical Systems Lab in Arizona State University. The end product of this thesis is creation of a software solution which can be used in the academia and industry for research in cyber physical systems related applications. The major features of the project are: creating a modular system for motion planning, use of Robot Operating System (ROS), use of triangulation for environment decomposition and using stargazer sensor for localization. The project is built on an open source software called ROS which provides an environment where it is very easy to integrate different modules be it software or hardware on a Linux based platform. Use of ROS implies the project or its modules can be adapted quickly for different applications as the need arises. The final software package created and tested takes a data file as its input which contains the LTL specifications, a symbols list used in the LTL and finally the environment polygon data containing real world coordinates for all polygons and also information on neighbors and parents of each polygon. The software package successfully ran the experiment of coverage, reachability with avoidance and sequencing.

Contributors

Agent

Created

Date Created
2013

151793-Thumbnail Image.png

A graphical language for LTL motion and mission planning

Description

Linear Temporal Logic is gaining increasing popularity as a high level specification language for robot motion planning due to its expressive power and scalability of LTL control synthesis algorithms. This formalism, however, requires expert knowledge and makes it inaccessible to

Linear Temporal Logic is gaining increasing popularity as a high level specification language for robot motion planning due to its expressive power and scalability of LTL control synthesis algorithms. This formalism, however, requires expert knowledge and makes it inaccessible to non-expert users. This thesis introduces a graphical specification environment to create high level motion plans to control robots in the field by converting a visual representation of the motion/task plan into a Linear Temporal Logic (LTL) specification. The visual interface is built on the Android tablet platform and provides functionality to create task plans through a set of well defined gestures and on screen controls. It uses the notion of waypoints to quickly and efficiently describe the motion plan and enables a variety of complex Linear Temporal Logic specifications to be described succinctly and intuitively by the user without the need for the knowledge and understanding of LTL specification. Thus, it opens avenues for its use by personnel in military, warehouse management, and search and rescue missions. This thesis describes the construction of LTL for various scenarios used for robot navigation using the visual interface developed and leverages the use of existing LTL based motion planners to carry out the task plan by a robot.

Contributors

Agent

Created

Date Created
2013

149560-Thumbnail Image.png

UnSync: a soft error resilient redundant CMP architecture

Description

Reducing device dimensions, increasing transistor densities, and smaller timing windows, expose the vulnerability of processors to soft errors induced by charge carrying particles. Since these factors are inevitable in the advancement of processor technology, the industry has been forced to

Reducing device dimensions, increasing transistor densities, and smaller timing windows, expose the vulnerability of processors to soft errors induced by charge carrying particles. Since these factors are inevitable in the advancement of processor technology, the industry has been forced to improve reliability on general purpose Chip Multiprocessors (CMPs). With the availability of increased hardware resources, redundancy based techniques are the most promising methods to eradicate soft error failures in CMP systems. This work proposes a novel customizable and redundant CMP architecture (UnSync) that utilizes hardware based detection mechanisms (most of which are readily available in the processor), to reduce overheads during error free executions. In the presence of errors (which are infrequent), the always forward execution enabled recovery mechanism provides for resilience in the system. The inherent nature of UnSync architecture framework supports customization of the redundancy, and thereby provides means to achieve possible performance-reliability trade-offs in many-core systems. This work designs a detailed RTL model of UnSync architecture and performs hardware synthesis to compare the hardware (power/area) overheads incurred. It then compares the same with those of the Reunion technique, a state-of-the-art redundant multi-core architecture. This work also performs cycle-accurate simulations over a wide range of SPEC2000, and MiBench benchmarks to evaluate the performance efficiency achieved over that of the Reunion architecture. Experimental results show that, UnSync architecture reduces power consumption by 34.5% and improves performance by up to 20% with 13.3% less area overhead, when compared to Reunion architecture for the same level of reliability achieved.

Contributors

Agent

Created

Date Created
2011