Matching Items (5)
Filtering by

Clear all filters

152313-Thumbnail Image.png
Description
Lunar Reconnaissance Orbiter (LRO) and MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft missions provide new data for investigating the youngest impact craters on Mercury and the Moon, along with lunar volcanic end-members: ancient silicic and young basaltic volcanism. The LRO Wide Angle Camera (WAC) and Narrow Angle Camera

Lunar Reconnaissance Orbiter (LRO) and MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft missions provide new data for investigating the youngest impact craters on Mercury and the Moon, along with lunar volcanic end-members: ancient silicic and young basaltic volcanism. The LRO Wide Angle Camera (WAC) and Narrow Angle Camera (NAC) in-flight absolute radiometric calibration used ground-based Robotic Lunar Observatory and Hubble Space Telescope data as standards. In-flight radiometric calibration is a small aspect of the entire calibration process but an important improvement upon the pre-flight measurements. Calibrated reflectance data are essential for comparing images from LRO to missions like MESSENGER, thus enabling science through engineering. Relative regolith optical maturation rates on Mercury and the Moon are estimated by comparing young impact crater densities and impact ejecta reflectance, thus empirically testing previous models of faster rates for Mercury relative to the Moon. Regolith maturation due to micrometeorite impacts and solar wind sputtering modies UV-VIS-NIR surface spectra, therefore understanding maturation rates is critical for interpreting remote sensing data from airless bodies. Results determined the regolith optical maturation rate on Mercury is 2 to 4 times faster than on the Moon. The Gruithuisen Domes, three lunar silicic volcanoes, represent relatively rare lunar lithologies possibly similar to rock fragments found in the Apollo sample collection. Lunar nonmare silicic volcanism has implications for lunar magmatic evolution. I estimated a rhyolitic composition using morphologic comparisons of the Gruithuisen Domes, measured from NAC 2-meter-per-pixel digital topographic models (DTMs), with terrestrial silicic dome morphologies and laboratory models of viscoplastic dome growth. Small, morphologically sharp irregular mare patches (IMPs) provide evidence for recent lunar volcanism widely distributed across the nearside lunar maria, which has implications for long-lived nearside magmatism. I identified 75 IMPs (100-5000 meters in dimension) in NAC images and DTMs, and determined stratigraphic relationships between units common to all IMPs. Crater counts give model ages from 18-58 Ma, and morphologic comparisons with young lunar features provided an additional age constraint of <100 Ma. The IMPs formed as low-volume basaltic eruptions significantly later than previous evidence of lunar mare basalt volcanism's end (1-1.2 Ga).
ContributorsBraden, Sarah E (Author) / Robinson, Mark S (Thesis advisor) / Bell, James F. (Committee member) / Christensen, Philip R. (Committee member) / Clarke, Amanda B (Committee member) / Lawrence, Samuel J (Committee member) / Arizona State University (Publisher)
Created2013
156004-Thumbnail Image.png
Description
Water is a critical resource for future human missions, and is necessary for understanding the evolution of the Solar System. The Moon and Mars have water in various forms and are therefore high-priority targets in the search for accessible extraterrestrial water. Complementary remote sensing analyses coupled with laboratory

Water is a critical resource for future human missions, and is necessary for understanding the evolution of the Solar System. The Moon and Mars have water in various forms and are therefore high-priority targets in the search for accessible extraterrestrial water. Complementary remote sensing analyses coupled with laboratory and field studies are necessary to provide a scientific context for future lunar and Mars exploration. In this thesis, I use multiple techniques to investigate the presence of water-ice at the lunar poles and the properties of martian chloride minerals, whose evolution is intricately linked with liquid water.

Permanently shadowed regions (PSRs) at the lunar poles may contain substantial water ice, but radar signatures at PSRs could indicate water ice or large block populations. Mini-RF radar and Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) products were used to assess block abundances where radar signatures indicated potential ice deposits. While the majority of PSRs in this study indicated large block populations and a low likelihood of water ice, one crater – Rozhdestvenskiy N – showed indirect indications of water ice in its interior.

Chloride deposits indicate regions where the last substantial liquid water existed on Mars. Major ion abundances and expected precipitation sequences of terrestrial chloride brines could provide context for assessing the provenance of martian chloride deposits. Chloride minerals are most readily distinguished in the far-infrared (45+ μm), where their fundamental absorption features are strongest. Multiple chloride compositions and textures were characterized in far-infrared emission for the first time. Systematic variations in the spectra were observed; these variations will allow chloride mineralogy to be determined and large variations in texture to be constrained.

In the present day, recurring slope lineae (RSL) may indicate water flow, but fresh water is not stable on Mars. However, dissolved chloride could allow liquid water to flow transiently. Using Thermal Emission Imaging System (THEMIS) data, I determined that RSL are most likely not fed by chloride-rich brines on Mars. Substantial amounts of salt would be consumed to produce a surface water flow; therefore, these features are therefore thought to instead be surface darkening due to capillary wicking.
ContributorsMitchell, Julie (Author) / Christensen, Philip R. (Thesis advisor) / Bell Iii, James F (Committee member) / Desch, Steven J (Committee member) / Hartnett, Hilairy E (Committee member) / Robinson, Mark S (Committee member) / Arizona State University (Publisher)
Created2017
156119-Thumbnail Image.png
Description
Impact cratering and volcanism are two fundamental processes that alter the surfaces of the terrestrial planets. Though well studied through laboratory experiments and terrestrial analogs, many questions remain regarding how these processes operate across the Solar System. Little is known about the formation of large impact basins (>300 km in

Impact cratering and volcanism are two fundamental processes that alter the surfaces of the terrestrial planets. Though well studied through laboratory experiments and terrestrial analogs, many questions remain regarding how these processes operate across the Solar System. Little is known about the formation of large impact basins (>300 km in diameter) and the degree to which they modify planetary surfaces. On the Moon, large impact basins dominate the terrain and are relatively well preserved. Because the lunar geologic timescale is largely derived from basin stratigraphic relations, it is crucial that we are able to identify and characterize materials emplaced as a result of the formation of the basins, such as light plains. Using high-resolution images under consistent illumination conditions and topography from the Lunar Reconnaissance Orbiter Camera (LROC), a new global map of light plains is presented at an unprecedented scale, revealing critical details of lunar stratigraphy and providing insight into the erosive power of large impacts. This work demonstrates that large basins significantly alter the lunar surface out to at least 4 radii from the rim, two times farther than previously thought. Further, the effect of pre-existing topography on the degradation of impact craters is unclear, despite their use in the age dating of surfaces. Crater measurements made over large regions of consistent coverage using LROC images and slopes derived from LROC topography show that pre-existing topography affects crater abundances and absolute model ages for craters up to at least 4 km in diameter.

On Mars, small volcanic edifices can provide valuable insight into the evolution of the crust and interior, but a lack of superposed craters and heavy mantling by dust make them difficult to age date. On Earth, morphometry can be used to determine the ages of cinder cone volcanoes in the absence of dated samples. Comparisons of high-resolution topography from the Context Imager (CTX) and a two-dimensional nonlinear diffusion model show that the forms observed on Mars could have been created through Earth-like processes, and with future work, it may be possible to derive an age estimate for these features in the absence of superposed craters or samples.
ContributorsMeyer, Heather (Author) / Robinson, Mark S (Thesis advisor) / Bell, Jim (Thesis advisor) / Denevi, Brett (Committee member) / Clarke, Amanda (Committee member) / Asphaug, Erik (Committee member) / Arizona State University (Publisher)
Created2018
Description
Planetary surfaces are constantly evolving through a series of endogenic and exogenic processes. Multi-temporal observations enable the detection of these newly formed surface changes. Analysis techniques of these observations require precise image geolocation obtainable only with accurate optical and projection distortion corrections. In this study, the Clementine Ultraviolet-Visible camera is

Planetary surfaces are constantly evolving through a series of endogenic and exogenic processes. Multi-temporal observations enable the detection of these newly formed surface changes. Analysis techniques of these observations require precise image geolocation obtainable only with accurate optical and projection distortion corrections. In this study, the Clementine Ultraviolet-Visible camera is geometrically calibrated, and the spacecraft orientation knowledge is refined, aligning the entire dataset to the reference frame defined by the more recent Lunar Reconnaissance Orbiter mission. This direct registration approach improved the geolocation to within 0.084 pixels (i.e., sub-pixel), enabling new optical maturity and mineral composition maps aligned with the present reference frame.Next, new surface changes on Mercury are discovered with a geometrically calibrated Mercury Dual Imaging Camera suite. Over twenty surface changes varying in size from 450 to 4400 meters are identified that formed between 2011 to 2015. Exogenic impacts do not explain all the surface changes witnessed. Some changes occurred on slopes near prominent tectonic features suggesting a potential tie to seismic activity. A pair of other reflectance changes were identified around hollow formations, meaning the surface feature is still evolving. This temporal dataset provides the first direct evidence of endogenic and exogenic activities of the innermost planet. Lastly, the color and photometric properties of newly formed impact craters are explored using hundreds of observations acquired before and post-impact. These observations reveal new details about the distal surface changes associated with the impact process. Phase ratio imaging enables a measurement of the phase curve slope, including near opposition (phase ~ 0°). While the entire proximal ejecta blanket shows an increase in the optical surface roughness properties, the region adjacent to the crater rim (1.0 to 1.25 crater radii from the center) expresses a broadening of the opposition surge consistent with the presence of fine-scale surface particles and rocks. Finally, Hapke parameters and color maps are also derived for the entire region before and after the impact event to quantify changes in surface properties and the maturity state of the regolith. This work provides new insight into the broad extent of surface modifications around newly formed craters.
ContributorsSpeyerer, Emerson (Author) / Robinson, Mark S (Thesis advisor) / Bell, James F (Committee member) / Hervig, Richard L (Committee member) / Scowen, Paul A (Committee member) / Zolotov, Mikhail Y (Committee member) / Arizona State University (Publisher)
Created2023
152354-Thumbnail Image.png
Description
Impact craters are ubiquitous throughout the Solar System, formed by one of the principal processes responsible for surface modification of terrestrial planets and solid bodies (i.e., asteroids, icy moons). The impact cratering process is well studied, particularly on the Moon and Mercury, where the results remain uncomplicated by atmospheric effects,

Impact craters are ubiquitous throughout the Solar System, formed by one of the principal processes responsible for surface modification of terrestrial planets and solid bodies (i.e., asteroids, icy moons). The impact cratering process is well studied, particularly on the Moon and Mercury, where the results remain uncomplicated by atmospheric effects, plate tectonics, or interactions with water and ices. Crater measurements, used to determine relative and absolute ages for geologic units by relating the cumulative crater frequency per unit area to radiometrically-determined ages from returned samples, are sensitive to the solar incidence angle of images used for counts. Earlier work is quantitatively improved by investigating this important effect and showing that absolute model ages are most accurately determined using images with incidence angles between 65° and 80°, and equilibrium crater diameter estimates are most accurate at ~80° incidence angle. A statistical method is developed using crater size-frequencies to distinguish lunar mare age units in the absence of spectral differences. Applied to the Moon, the resulting areal crater densities confidently identify expansive units with >300–500 my age differences, distinguish non-obvious secondaries, and determine that an area >1×104 km2 provides statistically robust crater measurements. This areal crater density method is also applied to the spectrally-homogeneous volcanic northern smooth plains (NSP) on Mercury. Although crater counts and observations of embayed craters indicate that the NSP experienced at least two resurfacing episodes, no observable age units are observed using areal crater density measurements, so smooth plains emplacement occurred over a relatively short timescale (<500 my). For the first time, the distribution of impact melt on Mercury and the Moon are compared at high resolution. Mercurian craters with diameters ≥30 km have a greater areal extent of interior melt deposits than similarly sized lunar craters, a result consistent with melt-generation model predictions. The effects of shaking on compositional sorting within a granular regolith are experimentally tested, demonstrating the possibility of mechanical segregation of particles in the lunar regolith. These results provide at least one explanation toward understanding the inconsistencies between lunar remote sensing datasets and are important for future spacecraft sample return missions.
ContributorsOstrach, Lillian Rose (Author) / Robinson, Mark S (Thesis advisor) / Bell Iii, James F (Committee member) / Christensen, Philip R. (Committee member) / Clarke, Amanda B (Committee member) / Garnero, Edward J (Committee member) / Arizona State University (Publisher)
Created2013