Matching Items (12)

131222-Thumbnail Image.png

Modeling Volatiles at the Lunar Poles

Description

The lunar poles have hydrated materials in their permanently shadowed regions (PSRs), also known as lunar cold traps. These cold traps exist because of the Moon’s slight tilt of 1.5,

The lunar poles have hydrated materials in their permanently shadowed regions (PSRs), also known as lunar cold traps. These cold traps exist because of the Moon’s slight tilt of 1.5, which consequently creates these PSRs. In these shadows, the temperature remains cold enough to prevent the sublimation of volatile materials for timescales spanning that of geologic times [Hayne et. al 2015]. PSRs are significant because they create an environment where water ice can exist within the first meter of regolith at the lunar poles, where many cold traps are present. These volatile materials can be observed through a process called neutron spectroscopy. Neutron spectroscopy is a method of observing the neutron interactions caused by galactic and extragalactic cosmic ray proton collisions. Neutron interactions are more sensitive to hydrogen than other elements found in the regolith, and thus are a good indicator of hydrated materials. Using neutron spectroscopy, it is possible to detect the hydrogen in these cold traps up to a meter deep in the regolith, thus detecting the presence of hydrated materials, water, or ice.
For this study, we used the Monte Carlo Neutral Particle Transport Code (MCNP6) to create a homogenous sphere that represented the PSRs on Moon, and then modeled five differing water contents for the lunar regolith ranging from 0-20 percent weight. These percent weights were modeled after the estimates for Shackleton crater, data from Lunar Reconnaissance Orbiter (LRO) mission, and data from Lunar Orbiter Laser Altimeter (LOLA).
This study was created with the LunaH-Map mission as motivation, seeking to exhibit what neutron data might be observed. The LunaH-Map mission is an array of mini-Neutron Spectrometers that will orbit the Moon 8-20 km away from the lunar surface and map the spatial
distribution of hydrogen at the lunar poles. The plots generated show the relationship between neutron flux and energy from the surface of the Moon as well as from 10km away. This data provides insight into the benefits of collecting orbital data versus surface data, as well as illustrating what LunaH-Map might observe within a PSR.

Contributors

Agent

Created

Date Created
  • 2020-05

148337-Thumbnail Image.png

Lunar Rover Navigation: Impact of Illumination Conditions on AI and Human Perception of Crater Sizes

Description

When rover mission planners are laying out the path for their rover, they use a combination of stereo images and statistical and geological data in order to plot a course

When rover mission planners are laying out the path for their rover, they use a combination of stereo images and statistical and geological data in order to plot a course for the vehicle to follow for its mission. However, there is a lack of detailed images of the lunar surface that indicate the specific presence of hazards, such as craters, and the creation of such crater maps is time-consuming. There is also little known about how varying lighting conditions caused by the changing solar incidence angle affects perception as well. This paper addresses this issue by investigating how varying the incidence angle of the sun affects how well the human and AI can detect craters. It will also see how AI can accelerate the crater-mapping process, and how well it performs relative to a human annotating crater maps by hand. To accomplish this, several sets of images of the lunar surface were taken with varying incidence angles for the same spot and were annotated both by hand and by an AI. The results are observed, and then the AI performance was rated by calculating its resulting precision and recall, considering the human annotations as being the ground truth. It was found that there seems to be a maximum incidence angle for which detect rates are the highest, and that, at the moment, the AI’s detection of craters is poor, but it can be improved. With this, it can inform future and more expansive investigations into how lighting can affect the perception of hazards to rovers, as well as the role AI can play in creating these crater maps.

Contributors

Agent

Created

Date Created
  • 2021-05

136181-Thumbnail Image.png

Hopping Mobility Mechanism for Robotic Exploration of Lunar Lava Pits

Description

A robotic exploration mission that would enter a lunar pit to characterize the environment is described. A hopping mechanism for the robot's mobility is proposed. Various methods of hopping drawn

A robotic exploration mission that would enter a lunar pit to characterize the environment is described. A hopping mechanism for the robot's mobility is proposed. Various methods of hopping drawn from research literature are discussed in detail. The feasibilities of mechanical, electric, fluid, and combustive methods are analyzed. Computer simulations show the mitigation of the risk of complex autonomous navigation systems. A mechanical hopping mechanism is designed to hop in Earth gravity and carry a payload half its mass. A physical experiment is completed and proves a need for further refinement of the prototype design. Future work is suggested to continue exploring hopping as a mobility method for the lunar robot.

Contributors

Agent

Created

Date Created
  • 2015-05

152313-Thumbnail Image.png

Analysis of spacecraft data for the study of diverse lunar volcanism and regolith maturation rates

Description

Lunar Reconnaissance Orbiter (LRO) and MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft missions provide new data for investigating the youngest impact craters on Mercury and the Moon, along

Lunar Reconnaissance Orbiter (LRO) and MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft missions provide new data for investigating the youngest impact craters on Mercury and the Moon, along with lunar volcanic end-members: ancient silicic and young basaltic volcanism. The LRO Wide Angle Camera (WAC) and Narrow Angle Camera (NAC) in-flight absolute radiometric calibration used ground-based Robotic Lunar Observatory and Hubble Space Telescope data as standards. In-flight radiometric calibration is a small aspect of the entire calibration process but an important improvement upon the pre-flight measurements. Calibrated reflectance data are essential for comparing images from LRO to missions like MESSENGER, thus enabling science through engineering. Relative regolith optical maturation rates on Mercury and the Moon are estimated by comparing young impact crater densities and impact ejecta reflectance, thus empirically testing previous models of faster rates for Mercury relative to the Moon. Regolith maturation due to micrometeorite impacts and solar wind sputtering modies UV-VIS-NIR surface spectra, therefore understanding maturation rates is critical for interpreting remote sensing data from airless bodies. Results determined the regolith optical maturation rate on Mercury is 2 to 4 times faster than on the Moon. The Gruithuisen Domes, three lunar silicic volcanoes, represent relatively rare lunar lithologies possibly similar to rock fragments found in the Apollo sample collection. Lunar nonmare silicic volcanism has implications for lunar magmatic evolution. I estimated a rhyolitic composition using morphologic comparisons of the Gruithuisen Domes, measured from NAC 2-meter-per-pixel digital topographic models (DTMs), with terrestrial silicic dome morphologies and laboratory models of viscoplastic dome growth. Small, morphologically sharp irregular mare patches (IMPs) provide evidence for recent lunar volcanism widely distributed across the nearside lunar maria, which has implications for long-lived nearside magmatism. I identified 75 IMPs (100-5000 meters in dimension) in NAC images and DTMs, and determined stratigraphic relationships between units common to all IMPs. Crater counts give model ages from 18-58 Ma, and morphologic comparisons with young lunar features provided an additional age constraint of <100 Ma. The IMPs formed as low-volume basaltic eruptions significantly later than previous evidence of lunar mare basalt volcanism's end (1-1.2 Ga).

Contributors

Agent

Created

Date Created
  • 2013

154544-Thumbnail Image.png

Breaking ground on the Moon and Mars: reconstructing lunar tectonic evolution and Martian central pit crater formation

Description

Understanding the structural evolution of planetary surfaces provides key insights to their physical properties and processes. On the Moon, large-scale tectonism was thought to have ended over a billion years

Understanding the structural evolution of planetary surfaces provides key insights to their physical properties and processes. On the Moon, large-scale tectonism was thought to have ended over a billion years ago. However, new Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) high resolution images show the Moon’s surface in unprecedented detail and show many previously unidentified tectonic landforms, forcing a re-assessment of our views of lunar tectonism. I mapped lobate scarps, wrinkle ridges, and graben across Mare Frigoris – selected as a type area due to its excellent imaging conditions, abundance of tectonic landforms, and range of inferred structural controls. The distribution, morphology, and crosscutting relationships of these newly identified populations of tectonic landforms imply a more complex and longer-lasting history of deformation that continues to today. I also performed additional numerical modeling of lobate scarp structures that indicates the upper kilometer of the lunar surface has experienced 3.5-18.6 MPa of differential stress in the recent past, likely due to global compression from radial thermal contraction.

Central pit craters on Mars are another instance of intriguing structures that probe subsurface physical properties. These kilometer-scale pits are nested in the centers of many impact craters on Mars as well as on icy satellites. They are inferred to form in the presence of a water-ice rich substrate; however, the process(es) responsible for their formation is still debated. Previous models invoke origins by either explosive excavation of potentially water-bearing crustal material, or by subsurface drainage of meltwater and/or collapse. I assessed radial trends in grain size around central pits using thermal inertias calculated from Thermal Emission Imaging System (THEMIS) thermal infrared images. Average grain size decreases with radial distance from pit rims – consistent with pit-derived ejecta but not expected for collapse models. I present a melt-contact model that might enable a delayed explosion, in which a central uplift brings ice-bearing substrate into contact with impact melt to generate steam explosions and excavate central pits during the impact modification stage.

Contributors

Agent

Created

Date Created
  • 2016

154314-Thumbnail Image.png

Ponds, flows, and ejecta of impact cratering and volcanism: a remote sensing perspective of a dynamic Moon

Description

Both volcanism and impact cratering produce ejecta and associated deposits incorporating a molten rock component. While the heat sources are different (exogenous vs. endogenous), the end results are landforms with

Both volcanism and impact cratering produce ejecta and associated deposits incorporating a molten rock component. While the heat sources are different (exogenous vs. endogenous), the end results are landforms with similar morphologies including ponds and flows of impact melt and lava around the central crater. Ejecta from both impact and volcanic craters can also include a high percentage of melted rock. Using Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) images, crucial details of these landforms are finally revealed, suggesting a much more dynamic Moon than is generally appreciated. Impact melt ponds and flows at craters as small as several hundred meters in diameter provide empirical evidence of abundant melting during the impact cratering process (much more than was previously thought), and this melt is mobile on the lunar surface for a significant time before solidifying. Enhanced melt deposit occurrences in the lunar highlands (compared to the mare) suggest that porosity, target composition, and pre-existing topography influence melt production and distribution. Comparatively deep impact craters formed in young melt deposits connote a relatively rapid evolution of materials on the lunar surface. On the other end of the spectrum, volcanic eruptions have produced the vast, plains-style mare basalts. However, little was previously known about the details of small-area eruptions and proximal volcanic deposits due to a lack of resolution. High-resolution images reveal key insights into small volcanic cones (0.5-3 km in diameter) that resemble terrestrial cinder cones. The cones comprise inter-layered materials, spatter deposits, and lava flow breaches. The widespread occurrence of the cones in most nearside mare suggests that basaltic eruptions occur from multiple sources in each basin and/or that rootless eruptions are relatively common. Morphologies of small-area volcanic deposits indicate diversity in eruption behavior of lunar basaltic eruptions driven by magmatic volatiles. Finally, models of polar volatile behavior during impact-heating suggest that chemical alteration of minerals in the presence of liquid water is one possible outcome that was previously not thought possible on the Moon.

Contributors

Agent

Created

Date Created
  • 2016

156119-Thumbnail Image.png

The formation and degradation of planetary surfaces: impact features and explosive volcanic landforms on the Moon and Mars

Description

Impact cratering and volcanism are two fundamental processes that alter the surfaces of the terrestrial planets. Though well studied through laboratory experiments and terrestrial analogs, many questions remain regarding how

Impact cratering and volcanism are two fundamental processes that alter the surfaces of the terrestrial planets. Though well studied through laboratory experiments and terrestrial analogs, many questions remain regarding how these processes operate across the Solar System. Little is known about the formation of large impact basins (>300 km in diameter) and the degree to which they modify planetary surfaces. On the Moon, large impact basins dominate the terrain and are relatively well preserved. Because the lunar geologic timescale is largely derived from basin stratigraphic relations, it is crucial that we are able to identify and characterize materials emplaced as a result of the formation of the basins, such as light plains. Using high-resolution images under consistent illumination conditions and topography from the Lunar Reconnaissance Orbiter Camera (LROC), a new global map of light plains is presented at an unprecedented scale, revealing critical details of lunar stratigraphy and providing insight into the erosive power of large impacts. This work demonstrates that large basins significantly alter the lunar surface out to at least 4 radii from the rim, two times farther than previously thought. Further, the effect of pre-existing topography on the degradation of impact craters is unclear, despite their use in the age dating of surfaces. Crater measurements made over large regions of consistent coverage using LROC images and slopes derived from LROC topography show that pre-existing topography affects crater abundances and absolute model ages for craters up to at least 4 km in diameter.

On Mars, small volcanic edifices can provide valuable insight into the evolution of the crust and interior, but a lack of superposed craters and heavy mantling by dust make them difficult to age date. On Earth, morphometry can be used to determine the ages of cinder cone volcanoes in the absence of dated samples. Comparisons of high-resolution topography from the Context Imager (CTX) and a two-dimensional nonlinear diffusion model show that the forms observed on Mars could have been created through Earth-like processes, and with future work, it may be possible to derive an age estimate for these features in the absence of superposed craters or samples.

Contributors

Agent

Created

Date Created
  • 2018

156004-Thumbnail Image.png

Investigations of water-bearing environments on the Moon and Mars

Description

Water is a critical resource for future human missions, and is necessary for understanding the evolution of the Solar System. The Moon and Mars have water in various forms

Water is a critical resource for future human missions, and is necessary for understanding the evolution of the Solar System. The Moon and Mars have water in various forms and are therefore high-priority targets in the search for accessible extraterrestrial water. Complementary remote sensing analyses coupled with laboratory and field studies are necessary to provide a scientific context for future lunar and Mars exploration. In this thesis, I use multiple techniques to investigate the presence of water-ice at the lunar poles and the properties of martian chloride minerals, whose evolution is intricately linked with liquid water.

Permanently shadowed regions (PSRs) at the lunar poles may contain substantial water ice, but radar signatures at PSRs could indicate water ice or large block populations. Mini-RF radar and Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) products were used to assess block abundances where radar signatures indicated potential ice deposits. While the majority of PSRs in this study indicated large block populations and a low likelihood of water ice, one crater – Rozhdestvenskiy N – showed indirect indications of water ice in its interior.

Chloride deposits indicate regions where the last substantial liquid water existed on Mars. Major ion abundances and expected precipitation sequences of terrestrial chloride brines could provide context for assessing the provenance of martian chloride deposits. Chloride minerals are most readily distinguished in the far-infrared (45+ μm), where their fundamental absorption features are strongest. Multiple chloride compositions and textures were characterized in far-infrared emission for the first time. Systematic variations in the spectra were observed; these variations will allow chloride mineralogy to be determined and large variations in texture to be constrained.

In the present day, recurring slope lineae (RSL) may indicate water flow, but fresh water is not stable on Mars. However, dissolved chloride could allow liquid water to flow transiently. Using Thermal Emission Imaging System (THEMIS) data, I determined that RSL are most likely not fed by chloride-rich brines on Mars. Substantial amounts of salt would be consumed to produce a surface water flow; therefore, these features are therefore thought to instead be surface darkening due to capillary wicking.

Contributors

Agent

Created

Date Created
  • 2017

154934-Thumbnail Image.png

Remote sensing of Martian sedimentary deposits and lunar pyroclastic deposits

Description

On Mars, sedimentary deposits reveal a complex history of water- and wind-related geologic processes. Central mounds – kilometer-scale stacks of sediment located within craters – occur across Mars, but the

On Mars, sedimentary deposits reveal a complex history of water- and wind-related geologic processes. Central mounds – kilometer-scale stacks of sediment located within craters – occur across Mars, but the specific processes responsible for mound formation and subsequent modification are still uncertain. A survey of central mounds within large craters was conducted. Mound locations, mound offsets within their host craters, and relative mound heights were used to address various mound formation hypotheses. The results suggest that mound sediments once filled their host craters and were later eroded into the features observed today. Mounds offsets from the center of their host crater imply that wind caused the erosion of central mounds. An in depth study of a single central mound (Mt. Sharp within Gale crater) was also conducted. Thermal Emission Imaging System Visible Imaging Subsystem (THEMIS-VIS) mosaics in grayscale and false color were used to characterize the morphology and color variations in and around Gale crater. One result of this study is that dunes within Gale crater vary in false color composites from blue to purple, and that these color differences may be due to changes in dust cover, grain size, and/or composition. To further investigate dune fields on Mars, albedo variations at eight dune fields were studied based on the hypothesis that a dune’s ripple migration rate is correlated to its albedo. This study concluded that a dune’s minimum albedo does not have a simple correlation with its ripple migration rate. Instead, dust devils remove dust on slow-moving and immobile dunes, whereas saltating sand caused by strong winds removes dust on faster-moving dunes.

On the Moon, explosive volcanic deposits within Oppenheimer crater that were emplaced ballistically were investigated. Lunar Reconnaissance Orbiter (LRO) Diviner Radiometer mid-infrared data, LRO Camera images, and Chandrayaan-1 orbiter Moon Mineralogy Mapper near-infrared spectra were used to test the hypothesis that the pyroclastic deposits in Oppenheimer crater were emplaced via Vulcanian activity by constraining their composition and mineralogy. The mineralogy and iron-content of the pyroclastic deposits vary significantly (including examples of potentially very high iron compositions), which indicates variability in eruption style. These results suggest that localized lunar pyroclastic deposits may have a more complex origin and mode of emplacement than previously thought.

Contributors

Agent

Created

Date Created
  • 2016

157675-Thumbnail Image.png

The Geologic History of the Hypanis Deposit, Mars and Ballistic Modeling of Lunar Impact Ejecta

Description

Water has shaped the surface of Mars, recording previous environments and inspiring the search for extinct life beyond Earth. While conditions on the Martian surface today are not conducive to

Water has shaped the surface of Mars, recording previous environments and inspiring the search for extinct life beyond Earth. While conditions on the Martian surface today are not conducive to the presence of liquid water, ancient erosional and depositional features indicate that this was not always so. Quantifying the regional and global history of water on Mars is crucial to understanding how the planet evolved, where to focus future exploration, and implications for water on Earth.

Many sites on Mars contain layered sedimentary deposits, sinuous valleys with delta shaped deposits, and other indications of large lakes. The Hypanis deposit is a unique endmember in this set of locations as it appears to be the largest ancient river delta identified on the planet, and it appears to have no topographic boundary, implying deposition into a sea. I have used a variety of high-resolution remote sensing techniques and geologic mapping techniques to present a new model of past water activity in the region.

I gathered new orbital observations and computed thermal inertia, albedo, elevation, and spectral properties of the Hypanis deposit. I measured the strike and dip of deposit layers to interpret the sedimentary history. My results indicate that Hypanis was formed in a large calm lacustrine setting. My geomorphic mapping of the deposit and catchment indicates buried volatile-rich sediments erupted through the Chryse basin fill, and may be geological young or ongoing. Collectively, my results complement previous studies that propose a global paleoshoreline, and support interpretations that Mars had an ocean early in its history. Future missions to the Martian surface should consider Hypanis as a high-value sampling opportunity.

Contributors

Agent

Created

Date Created
  • 2019