Matching Items (6)
Filtering by

Clear all filters

157015-Thumbnail Image.png
Description
Deep learning (DL) has proved itself be one of the most important developements till date with far reaching impacts in numerous fields like robotics, computer vision, surveillance, speech processing, machine translation, finance, etc. They are now widely used for countless applications because of their ability to generalize real world data,

Deep learning (DL) has proved itself be one of the most important developements till date with far reaching impacts in numerous fields like robotics, computer vision, surveillance, speech processing, machine translation, finance, etc. They are now widely used for countless applications because of their ability to generalize real world data, robustness to noise in previously unseen data and high inference accuracy. With the ability to learn useful features from raw sensor data, deep learning algorithms have out-performed tradinal AI algorithms and pushed the boundaries of what can be achieved with AI. In this work, we demonstrate the power of deep learning by developing a neural network to automatically detect cough instances from audio recorded in un-constrained environments. For this, 24 hours long recordings from 9 dierent patients is collected and carefully labeled by medical personel. A pre-processing algorithm is proposed to convert event based cough dataset to a more informative dataset with start and end of coughs and also introduce data augmentation for regularizing the training procedure. The proposed neural network achieves 92.3% leave-one-out accuracy on data captured in real world.

Deep neural networks are composed of multiple layers that are compute/memory intensive. This makes it difficult to execute these algorithms real-time with low power consumption using existing general purpose computers. In this work, we propose hardware accelerators for a traditional AI algorithm based on random forest trees and two representative deep convolutional neural networks (AlexNet and VGG). With the proposed acceleration techniques, ~ 30x performance improvement was achieved compared to CPU for random forest trees. For deep CNNS, we demonstrate that much higher performance can be achieved with architecture space exploration using any optimization algorithms with system level performance and area models for hardware primitives as inputs and goal of minimizing latency with given resource constraints. With this method, ~30GOPs performance was achieved for Stratix V FPGA boards.

Hardware acceleration of DL algorithms alone is not always the most ecient way and sucient to achieve desired performance. There is a huge headroom available for performance improvement provided the algorithms are designed keeping in mind the hardware limitations and bottlenecks. This work achieves hardware-software co-optimization for Non-Maximal Suppression (NMS) algorithm. Using the proposed algorithmic changes and hardware architecture

With CMOS scaling coming to an end and increasing memory bandwidth bottlenecks, CMOS based system might not scale enough to accommodate requirements of more complicated and deeper neural networks in future. In this work, we explore RRAM crossbars and arrays as compact, high performing and energy efficient alternative to CMOS accelerators for deep learning training and inference. We propose and implement RRAM periphery read and write circuits and achieved ~3000x performance improvement in online dictionary learning compared to CPU.

This work also examines the realistic RRAM devices and their non-idealities. We do an in-depth study of the effects of RRAM non-idealities on inference accuracy when a pretrained model is mapped to RRAM based accelerators. To mitigate this issue, we propose Random Sparse Adaptation (RSA), a novel scheme aimed at tuning the model to take care of the faults of the RRAM array on which it is mapped. Our proposed method can achieve inference accuracy much higher than what traditional Read-Verify-Write (R-V-W) method could achieve. RSA can also recover lost inference accuracy 100x ~ 1000x faster compared to R-V-W. Using 32-bit high precision RSA cells, we achieved ~10% higher accuracy using fautly RRAM arrays compared to what can be achieved by mapping a deep network to an 32 level RRAM array with no variations.
ContributorsMohanty, Abinash (Author) / Cao, Yu (Thesis advisor) / Seo, Jae-Sun (Committee member) / Vrudhula, Sarma (Committee member) / Chakrabarti, Chaitali (Committee member) / Arizona State University (Publisher)
Created2018
135798-Thumbnail Image.png
Description
The artificial neural network is a form of machine learning that is highly effective at recognizing patterns in large, noise-filled datasets. Possessing these attributes uniquely qualifies the neural network as a mathematical basis for adaptability in personal biomedical devices. The purpose of this study was to determine the viability of

The artificial neural network is a form of machine learning that is highly effective at recognizing patterns in large, noise-filled datasets. Possessing these attributes uniquely qualifies the neural network as a mathematical basis for adaptability in personal biomedical devices. The purpose of this study was to determine the viability of neural networks in predicting Freezing of Gait (FoG), a symptom of Parkinson's disease in which the patient's legs are suddenly rendered unable to move. More specifically, a class of neural networks known as layered recurrent networks (LRNs) was applied to an open- source FoG experimental dataset donated to the Machine Learning Repository of the University of California at Irvine. The independent variables in this experiment \u2014 the subject being tested, neural network architecture, and sampling of the majority classes \u2014 were each varied and compared against the performance of the neural network in predicting future FoG events. It was determined that single-layered recurrent networks are a viable method of predicting FoG events given the volume of the training data available, though results varied significantly between different patients. For the three patients tested, shank acceleration data was used to train networks with peak precision/recall values of 41.88%/47.12%, 89.05%/29.60%, and 57.19%/27.39% respectively. These values were obtained for networks optimized using detection theory rather than optimized for desired values of precision and recall. Furthermore, due to the nature of the experiments performed in this study, these values are representative of the lower-bound performance of layered recurrent networks trained to detect gait freezing. As such, these values may be improved through a variety of measures.
ContributorsZia, Jonathan Sargon (Author) / Panchanathan, Sethuraman (Thesis director) / McDaniel, Troy (Committee member) / Adler, Charles (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
157804-Thumbnail Image.png
Description
While machine/deep learning algorithms have been successfully used in many practical applications including object detection and image/video classification, accurate, fast, and low-power hardware implementations of such algorithms are still a challenging task, especially for mobile systems such as Internet of Things, autonomous vehicles, and smart drones.

This work presents an energy-efficient

While machine/deep learning algorithms have been successfully used in many practical applications including object detection and image/video classification, accurate, fast, and low-power hardware implementations of such algorithms are still a challenging task, especially for mobile systems such as Internet of Things, autonomous vehicles, and smart drones.

This work presents an energy-efficient programmable application-specific integrated circuit (ASIC) accelerator for object detection. The proposed ASIC supports multi-class (face/traffic sign/car license plate/pedestrian), many-object (up to 50) in one image with different sizes (6 down-/11 up-scaling), and high accuracy (87% for face detection datasets). The proposed accelerator is composed of an integral channel detector with 2,000 classifiers for five rigid boosted templates to make a strong object detection. By jointly optimizing the algorithm and efficient hardware architecture, the prototype chip implemented in 65nm demonstrates real-time object detection of 20-50 frames/s with 22.5-181.7mW (0.54-1.75nJ/pixel) at 0.58-1.1V supply.



In this work, to reduce computation without accuracy degradation, an energy-efficient deep convolutional neural network (DCNN) accelerator is proposed based on a novel conditional computing scheme and integrates convolution with subsequent max-pooling operations. This way, the total number of bit-wise convolutions could be reduced by ~2x, without affecting the output feature values. This work also has been developing an optimized dataflow that exploits sparsity, maximizes data re-use and minimizes off-chip memory access, which can improve upon existing hardware works. The total off-chip memory access can be saved by 2.12x. Preliminary results of the proposed DCNN accelerator achieved a peak 7.35 TOPS/W for VGG-16 by post-layout simulation results in 40nm.

A number of recent efforts have attempted to design custom inference engine based on various approaches, including the systolic architecture, near memory processing, and in-meomry computing concept. This work evaluates a comprehensive comparison of these various approaches in a unified framework. This work also presents the proposed energy-efficient in-memory computing accelerator for deep neural networks (DNNs) by integrating many instances of in-memory computing macros with an ensemble of peripheral digital circuits, which supports configurable multibit activations and large-scale DNNs seamlessly while substantially improving the chip-level energy-efficiency. Proposed accelerator is fully designed in 65nm, demonstrating ultralow energy consumption for DNNs.
ContributorsKim, Minkyu (Author) / Seo, Jae-Sun (Thesis advisor) / Cao, Yu Kevin (Committee member) / Vrudhula, Sarma (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2019
158259-Thumbnail Image.png
Description
In the last decade deep learning based models have revolutionized machine learning and computer vision applications. However, these models are data-hungry and training them is a time-consuming process. In addition, when deep neural networks are updated to augment their prediction space with new data, they run into the problem of

In the last decade deep learning based models have revolutionized machine learning and computer vision applications. However, these models are data-hungry and training them is a time-consuming process. In addition, when deep neural networks are updated to augment their prediction space with new data, they run into the problem of catastrophic forgetting, where the model forgets previously learned knowledge as it overfits to the newly available data. Incremental learning algorithms enable deep neural networks to prevent catastrophic forgetting by retaining knowledge of previously observed data while also learning from newly available data.

This thesis presents three models for incremental learning; (i) Design of an algorithm for generative incremental learning using a pre-trained deep neural network classifier; (ii) Development of a hashing based clustering algorithm for efficient incremental learning; (iii) Design of a student-teacher coupled neural network to distill knowledge for incremental learning. The proposed algorithms were evaluated using popular vision datasets for classification tasks. The thesis concludes with a discussion about the feasibility of using these techniques to transfer information between networks and also for incremental learning applications.
ContributorsPatil, Rishabh (Author) / Venkateswara, Hemanth (Thesis advisor) / Panchanathan, Sethuraman (Thesis advisor) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2020
161997-Thumbnail Image.png
Description
Many real-world engineering problems require simulations to evaluate the design objectives and constraints. Often, due to the complexity of the system model, simulations can be prohibitive in terms of computation time. One approach to overcome this issue is to construct a surrogate model, which approximates the original model. The focus

Many real-world engineering problems require simulations to evaluate the design objectives and constraints. Often, due to the complexity of the system model, simulations can be prohibitive in terms of computation time. One approach to overcome this issue is to construct a surrogate model, which approximates the original model. The focus of this work is on the data-driven surrogate models, in which empirical approximations of the output are performed given the input parameters. Recently neural networks (NN) have re-emerged as a popular method for constructing data-driven surrogate models. Although, NNs have achieved excellent accuracy and are widely used, they pose their own challenges. This work addresses two common challenges, the need for: (1) hardware acceleration and (2) uncertainty quantification (UQ) in the presence of input variability. The high demand in the inference phase of deep NNs in cloud servers/edge devices calls for the design of low power custom hardware accelerators. The first part of this work describes the design of an energy-efficient long short-term memory (LSTM) accelerator. The overarching goal is to aggressively reduce the power consumption and area of the LSTM components using approximate computing, and then use architectural level techniques to boost the performance. The proposed design is synthesized and placed and routed as an application-specific integrated circuit (ASIC). The results demonstrate that this accelerator is 1.2X and 3.6X more energy-efficient and area-efficient than the baseline LSTM. In the second part of this work, a robust framework is developed based on an alternate data-driven surrogate model referred to as polynomial chaos expansion (PCE) for addressing UQ. In contrast to many existing approaches, no assumptions are made on the elements of the function space and UQ is a function of the expansion coefficients. Moreover, the sensitivity of the output with respect to any subset of the input variables can be computed analytically by post-processing the PCE coefficients. This provides a systematic and incremental method to pruning or changing the order of the model. This framework is evaluated on several real-world applications from different domains and is extended for classification tasks as well.
ContributorsAzari, Elham (Author) / Vrudhula, Sarma (Thesis advisor) / Fainekos, Georgios (Committee member) / Ren, Fengbo (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021
131212-Thumbnail Image.png
Description
In recent years, the development of new Machine Learning models has allowed for new technological advancements to be introduced for practical use across the world. Multiple studies and experiments have been conducted to create new variations of Machine Learning models with different algorithms to determine if potential systems would prove

In recent years, the development of new Machine Learning models has allowed for new technological advancements to be introduced for practical use across the world. Multiple studies and experiments have been conducted to create new variations of Machine Learning models with different algorithms to determine if potential systems would prove to be successful. Even today, there are still many research initiatives that are continuing to develop new models in the hopes to discover potential solutions for problems such as autonomous driving or determining the emotional value from a single sentence. One of the current popular research topics for Machine Learning is the development of Facial Expression Recognition systems. These Machine Learning models focus on classifying images of human faces that are expressing different emotions through facial expressions. In order to develop effective models to perform Facial Expression Recognition, researchers have gone on to utilize Deep Learning models, which are a more advanced implementation of Machine Learning models, known as Neural Networks. More specifically, the use of Convolutional Neural Networks has proven to be the most effective models for achieving highly accurate results at classifying images of various facial expressions. Convolutional Neural Networks are Deep Learning models that are capable of processing visual data, such as images and videos, and can be used to identify various facial expressions. The purpose of this project, I focused on learning about the important concepts of Machine Learning, Deep Learning, and Convolutional Neural Networks to implement a Convolutional Neural Network that was previously developed by a recommended research paper.
ContributorsFrace, Douglas R (Author) / Demakethepalli Venkateswara, Hemanth Kumar (Thesis director) / McDaniel, Troy (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05