Matching Items (2)
Filtering by

Clear all filters

132164-Thumbnail Image.png
Description
With the coming advances of computational power, algorithmic trading has become one of the primary strategies to trading on the stock market. To understand why and how these strategies have been effective, this project has taken a look at the complete process of creating tools and applications to analyze and

With the coming advances of computational power, algorithmic trading has become one of the primary strategies to trading on the stock market. To understand why and how these strategies have been effective, this project has taken a look at the complete process of creating tools and applications to analyze and predict stock prices in order to perform low-frequency trading. The project is composed of three main components. The first component is integrating several public resources to acquire and process financial trading data and store it in order to complete the other components. Alpha Vantage API, a free open source application, provides an accurate and comprehensive dataset of features for each stock ticker requested. The second component is researching, prototyping, and implementing various trading algorithms in code. We began by focusing on the Mean Reversion algorithm as a proof of concept algorithm to develop meaningful trading strategies and identify patterns within our datasets. To augment our market prediction power (“alpha”), we implemented a Long Short-Term Memory recurrent neural network. Neural Networks are an incredibly effective but often complex tool used frequently in data science when traditional methods are found lacking. Following the implementation, the last component is to optimize, analyze, compare, and contrast all of the algorithms and identify key features to conclude the overall effectiveness of each algorithm. We were able to identify conclusively which aspects of each algorithm provided better alpha and create an entire pipeline to automate this process for live trading implementation. An additional reason for automation is to provide an educational framework such that any who may be interested in quantitative finance in the future can leverage this project to gain further insight.
ContributorsYurowkin, Alexander (Co-author) / Kumar, Rohit (Co-author) / Welfert, Bruno (Thesis director) / Li, Baoxin (Committee member) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132368-Thumbnail Image.png
Description
A defense-by-randomization framework is proposed as an effective defense mechanism against different types of adversarial attacks on neural networks. Experiments were conducted by selecting a combination of differently constructed image classification neural networks to observe which combinations applied to this framework were most effective in maximizing classification accuracy. Furthermore, the

A defense-by-randomization framework is proposed as an effective defense mechanism against different types of adversarial attacks on neural networks. Experiments were conducted by selecting a combination of differently constructed image classification neural networks to observe which combinations applied to this framework were most effective in maximizing classification accuracy. Furthermore, the reasons why particular combinations were more effective than others is explored.
ContributorsMazboudi, Yassine Ahmad (Author) / Yang, Yezhou (Thesis director) / Ren, Yi (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05