Matching Items (5)
Filtering by

Clear all filters

135555-Thumbnail Image.png
Description
Species survive by adapting to what is demanded by their environment. In constant and fluctuating environments, specialist and generalists should be favored, respectively. However, the costs and benefits of adaptation can depend on a variety of factors that alter the intensity of the specialist-generalist trade-off. We examined flight performance to

Species survive by adapting to what is demanded by their environment. In constant and fluctuating environments, specialist and generalists should be favored, respectively. However, the costs and benefits of adaptation can depend on a variety of factors that alter the intensity of the specialist-generalist trade-off. We examined flight performance to determine how well flies that evolved in constant and fluctuating temperatures acclimated to hot and cold temperatures. We predicted that flies would perform best at temperatures most similar to the ones the flies evolved at. Best performance was found when rearing and testing temperatures aligned with the temperature at which a genotype had evolved, with the generalist sharing the best and worst performance combination with the constant thermally evolved flies. Interestingly, evolved and reared temperatures had equal impact on flight performance. It was also observed that rearing at 25°C resulted in flies with the best fitness. These results contribute to the specialist-generalist theory and the idea that long term cold development is restricting in terms of range for thermal performance.
ContributorsLe Vinh Thuy, Jacqueline (Author) / Angilletta, Michael (Thesis director) / VandenBrooks, John (Committee member) / Czarnoleski, Marcin (Committee member) / School of Molecular Sciences (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135382-Thumbnail Image.png
Description
In competitive Taekwondo, Electronic Body Protectors (EBPs) are used to register hits made by players during sparring. EBPs are comprised of three main components: chest guard, foot sock, and headgear. This equipment interacts with each other through the use of magnets, electric sensors, transmitters, and a receiver. The receiver is

In competitive Taekwondo, Electronic Body Protectors (EBPs) are used to register hits made by players during sparring. EBPs are comprised of three main components: chest guard, foot sock, and headgear. This equipment interacts with each other through the use of magnets, electric sensors, transmitters, and a receiver. The receiver is connected to a computer programmed with software to process signals from the transmitter and determine whether or not a competitor scored a point. The current design of EBPs, however, have numerous shortcomings, including sensing false positives, failing to register hits, costing too much, and relying on human judgment. This thesis will thoroughly delineate the operation of the current EBPs used and discuss research performed in order to eliminate these weaknesses.
ContributorsSpell, Valerie Anne (Author) / Kozicki, Michael (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
155697-Thumbnail Image.png
Description
Many animals thermoregulate to maximize performance. However, interactions with other animals, such as competitors or predators, limit access to preferred microclimates. For instance, an animal may thermoregulate poorly when fighting rivals or avoiding predators. However, the distribution of thermal resources should influence how animals perceive and respond to risk. When

Many animals thermoregulate to maximize performance. However, interactions with other animals, such as competitors or predators, limit access to preferred microclimates. For instance, an animal may thermoregulate poorly when fighting rivals or avoiding predators. However, the distribution of thermal resources should influence how animals perceive and respond to risk. When thermal resources are concentrated in space, individuals compete for access, which presumably reduces the thermoregulatory performance while making their location more predictable to predators. Conversely, when thermal resources are dispersed, several individuals can thermoregulate effectively without occupying the same area. Nevertheless, interactions with competitors or predators impose a potent stress, often resulting in both behavioral and physiological changes that influence thermoregulation. To assess the costs of intraspecific competition and predation risk during thermoregulation, I measured thermoregulation, movement, and hormones of male lizards (Sceloporus jarrovi) in experiment landscapes, with clumped to patchy distributions of microclimates. I found lizards aggressively competed for access to microclimates, with larger males gaining priority access when thermal resources were aggregated. Competition reduced thermoregulatory performance, increased movements, and elevated plasma corticosterone in large and small males. However, the magnitude of these responses decreased as the patchiness of the thermal environment increased. Similarly, under simulated predation risk, lizards reduced thermoregulatory performance, decreased movements, and elevated plasma corticosterone. Again, with the magnitude of these responses decreased with increasing thermal patchiness. Interestingly, even without competitors or predators, lizards in clumped arenas moved greater distances and circulated more corticosterone than did lizards in patchy arenas, indicating the thermal quality of the thermal landscape affected the energetic demands on lizards. Thus, biologists should consider species interactions and spatial structure when modeling impacts of climate change on thermoregulation.
ContributorsRusch, Travis W (Author) / Angilletta, Michael (Thesis advisor) / Sears, Mike (Committee member) / DeNardo, Dale (Committee member) / Deviche, Pierre (Committee member) / McGraw, Kevin (Committee member) / Arizona State University (Publisher)
Created2017
Description
Animals are thought to die at high temperatures because proteins and cell membranes lose their structural integrity. Alternatively, a newer hypothesis (the oxygen and capacity limitation of thermal tolerance, or OCLTT) states that death occurs because oxygen supply becomes limited at high temperatures. Consequently, animals exposed to hypoxia are more

Animals are thought to die at high temperatures because proteins and cell membranes lose their structural integrity. Alternatively, a newer hypothesis (the oxygen and capacity limitation of thermal tolerance, or OCLTT) states that death occurs because oxygen supply becomes limited at high temperatures. Consequently, animals exposed to hypoxia are more sensitive to heating than those exposed to normoxia or hyperoxia. We hypothesized that animals raised in hypoxia would acclimate to the low oxygen supply, thereby making them less sensitive to heating. Such acclimation would be expressed as greater heat tolerance and better flight performance in individuals raised at lower oxygen concentrations. We raised flies (Drosophila melanogaster) from eggs to adults under oxygen concentrations ranging from 10% to 31% and measured two aspects of thermal tolerance: 1) the time required for flies to lose motor function at 39.5°C at normoxia (21%), referred to as knock-down time, and 2) flight performance at 37°, 39°, or 41°C and 12%, 21%, or 31% oxygen. Contrary to our prediction, flies from all treatments had the same knock-down time. However, flight performance at hypoxia was greatest for flies raised in hypoxia, but flight performance at normoxia and hyperoxia was greatest for flies raised at hyperoxia. Thus, flight performance acclimated to oxygen supply during development, but heat tolerance did not. Our data does not support the OCLTT hypothesis, but instead supports the beneficial acclimation hypothesis, which proposes that acclimation improves the function of an organism during environmental change.
ContributorsShiehzadegan, Shayan (Co-author) / VadenBrooks, John (Co-author) / Le, Jackie (Co-author) / Smith, Colton (Co-author) / Shiehzadegan, Shima (Co-author) / Angilletta, Michael (Co-author, Thesis director) / VandenBrooks, John (Committee member) / Klok, C. J. (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148143-Thumbnail Image.png
Description

Lactate is a commonly known biochemical that is usually produced under anaerobic conditions. This makes it a useful marker for examining the possibility that Drosophila melanogaster undergoes natural hypoxic states during development due to the rate of growth. To analyze this observation and its potential for explaining developmental changes, a

Lactate is a commonly known biochemical that is usually produced under anaerobic conditions. This makes it a useful marker for examining the possibility that Drosophila melanogaster undergoes natural hypoxic states during development due to the rate of growth. To analyze this observation and its potential for explaining developmental changes, a lactate assay was used to quantify lactate produced across time points in the third larval instar and across early adulthood. Lactate assay results showed near-zero lactate levels for both larvae and adults. There were confounding factors present in larval lactate assays which made analysis difficult. However, the results of the adult lactate assays seem to indicate an inability to produce large amounts of lactate regardless of time point in adulthood, suggesting that adults do not naturally experience hypoxia during or after eclosion.

ContributorsWiertek, Marcellina Emilia (Author) / Harrison, Jon (Thesis director) / Angilletta, Michael (Committee member) / Talal, Stav (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05