Matching Items (10)
Filtering by

Clear all filters

153035-Thumbnail Image.png
Description
Dimensional Metrology is the branch of science that determines length, angular, and geometric relationships within manufactured parts and compares them with required tolerances. The measurements can be made using either manual methods or sampled coordinate metrology (Coordinate measuring machines). Manual measurement methods have been in practice for a long time

Dimensional Metrology is the branch of science that determines length, angular, and geometric relationships within manufactured parts and compares them with required tolerances. The measurements can be made using either manual methods or sampled coordinate metrology (Coordinate measuring machines). Manual measurement methods have been in practice for a long time and are well accepted in the industry, but are slow for the present day manufacturing. On the other hand CMMs are relatively fast, but these methods are not well established yet. The major problem that needs to be addressed is the type of feature fitting algorithm used for evaluating tolerances. In a CMM the use of different feature fitting algorithms on a feature gives different values, and there is no standard that describes the type of feature fitting algorithm to be used for a specific tolerance. Our research is focused on identifying the feature fitting algorithm that is best used for each type of tolerance. Each algorithm is identified as the one to best represent the interpretation of geometric control as defined by the ASME Y14.5 standard and on the manual methods used for the measurement of a specific tolerance type. Using these algorithms normative procedures for CMMs are proposed for verifying tolerances. The proposed normative procedures are implemented as software. Then the procedures are verified by comparing the results from software with that of manual measurements.

To aid this research a library of feature fitting algorithms is developed in parallel. The library consists of least squares, Chebyshev and one sided fits applied on the features of line, plane, circle and cylinder. The proposed normative procedures are useful for evaluating tolerances in CMMs. The results evaluated will be in accordance to the standard. The ambiguity in choosing the algorithms is prevented. The software developed can be used in quality control for inspection purposes.
ContributorsVemulapalli, Prabath (Author) / Shah, Jami J. (Thesis advisor) / Davidson, Joseph K. (Committee member) / Takahashi, Timothy (Committee member) / Arizona State University (Publisher)
Created2014
134285-Thumbnail Image.png
Description
This experiment used hotwire anemometry to examine the von Kármán vortex street and how different surface conditions affect the wake profile of circular airfoils, or bluff bodies. Specifically, this experiment investigated how the various surface conditions affected the shedding frequency and Strouhal Number of the vortex street as Reynolds Number

This experiment used hotwire anemometry to examine the von Kármán vortex street and how different surface conditions affect the wake profile of circular airfoils, or bluff bodies. Specifically, this experiment investigated how the various surface conditions affected the shedding frequency and Strouhal Number of the vortex street as Reynolds Number is increased. The cylinders tested varied diameter, surface finish, and wire wrapping. Larger diameters corresponded with lower shedding frequencies, rougher surfaces decreased Strouhal Number, and the addition of thick wires to the surface of the cylinder completely disrupted the vortex shedding to the point where there was almost no dominant shedding frequency. For the smallest diameter cylinder tested, secondary dominant frequencies were observed, suggesting harmonics.
ContributorsCoote, Peter John (Author) / Takahashi, Timothy (Thesis director) / White, Daniel (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133322-Thumbnail Image.png
Description
Each year, the CanSat Competition organizers release aerospace based engineering mission objectives for collegiate teams to compete in. This year, the design is an aerodynamically stable probe that will descend from an altitude of 725 meters at a rate between 10-30 meters/sec until it reaches an altitude of 300 meters,

Each year, the CanSat Competition organizers release aerospace based engineering mission objectives for collegiate teams to compete in. This year, the design is an aerodynamically stable probe that will descend from an altitude of 725 meters at a rate between 10-30 meters/sec until it reaches an altitude of 300 meters, where it will then release a parachute as its aerobraking mechanism as it descends at 5 meters/sec until it reaches the ground. The focus of this paper is to investigate the design of the probe itself and how slender body theory and cross flow drag affect the lift and aerodynamic stability of this bluff body. A tool is developed inside of MATLAB which calculates the slender body lift as well as the lift from the cross flow drag. It then uses that information to calculate the total moment about the center of gravity for a range of angles of attack and free stream velocities. This tool is then used to optimize the geometry of the probe. These geometries are used to construct a prototype and that prototype is tested by a drop test from a 6-story building. The initial tests confirm the calculations that the probe, bluff body, is stable and self-correcting in its descent. Future work involves more high-altitude and ground-level tests that will further verify and improve on the current design.
ContributorsMcCourt, Anthony Michael (Author) / Takahashi, Timothy (Thesis director) / Herrmann, Marcus (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135623-Thumbnail Image.png
Description
The aerodynamics of golf club heads effect the forces on the club head throughout the swing. The bluff body geometry and passive flow control elements make the aerodynamics of golf club heads far more complex. The theory behind the geometry of the bluff body aerodynamics relies on the

The aerodynamics of golf club heads effect the forces on the club head throughout the swing. The bluff body geometry and passive flow control elements make the aerodynamics of golf club heads far more complex. The theory behind the geometry of the bluff body aerodynamics relies on the state of the boundary layer and its interaction with the golf club head. Laminar and turbulent boundary layer flow result in drag, but in varying degrees. Separation, or attachment, of the boundary layer in these laminar and turbulent boundary layer flows is part of the cause of the induced drag. Skin friction and pressure drag are the two forms of surface forces which vary according to the state of the boundary layer. To review the state of the boundary layer flow and provide validation data for the corresponding, the golf club head was tested in a wind tunnel. Drag readings from the experiment showed the lowest drag occurred while the club face was perpendicular to the flow from the range of 50 miles per hour to 90 miles per hour. Additionally, the decrease in drag varied greatly depending on the orientation of golf club head. The decrease in the coefficient for the club perpendicular to the flow was approximately 3.99*〖10〗^(-6) C_d/Re while the decrease for the club at 110° was 1.07*〖10〗^(-6) C_d/Re. The general trend of the slopes indicated the pressure drag resulted in major variations while the drag due to skin friction remained relatively constant.
For the testing of the golf club head, two probes were developed to measure the turbulent intensity in the flow. The probes, based on Rossow’s (1993) three probe system, compared the dynamic pressure of the flow with the stream-wise dynamic pressure in the flow. The resultant measurements could then produce the ratio of the cross-stream fluctuations in velocity to the time-averaged velocity. The turbulence intensity calculations would provide insight on the turbulence in the boundary layer flow and wake.
ContributorsBrausch, Matthew James (Author) / Takahashi, Timothy (Thesis director) / Ghods, Sina (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

The following analysis was conducted at the Arizona State University open loop wind tunnel. Two 1/24-th scale NASCAR models were placed in a wind tunnel test section and were adjusted to study drafting that commonly occurs at superspeedway racetracks. The purpose of the experiment was to determine how drafting affects

The following analysis was conducted at the Arizona State University open loop wind tunnel. Two 1/24-th scale NASCAR models were placed in a wind tunnel test section and were adjusted to study drafting that commonly occurs at superspeedway racetracks. The purpose of the experiment was to determine how drafting affects a leading and trailing car through changes in distance. A wind tunnel model was developed consisting of two 2019 NASCAR Chevy Camaro race car models, two bar-style load cells, and a programmed Arduino UNO. Two trials were run at each drafting distance, 0, 0.5, 1, 1.5, and 2 car lengths apart. Each trial was run at a wind tunnel velocity of 78 mph (35 m/s) and force data was collected to represent the drag effects at each drafting location. Based on previously published experimentation, this analysis provided important data that related drafting effects in scale model race cars to full-scale vehicles. The experiment showed that scale model testing can be accurately completed when the wind tunnel Reynolds number is of the same magnitude as a full-scale NASCAR. However, the wind tunnel data collected was proven to be fully laminar flow and did not compare to the flow characteristics of typically turbulent flow seen in superspeedway races. Overall, the analytical drag analysis of drafting NASCAR models proved that wind tunnel testing is only accurate when many parameters are met and should only be used as a method of validation to full-scale testing.

ContributorsOlszak, Parker T (Author) / Takahashi, Timothy (Thesis director) / Kasbaoui, Mohamed (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
158753-Thumbnail Image.png
Description
The process of designing any real world blunt leading-edge wing is tedious andinvolves hundreds, if not thousands, of design iterations to narrow down a single design.
Add in the complexities of supersonic flow and the challenge increases exponentially.
One possible, and often common, pathway for this design is to jump straight into

The process of designing any real world blunt leading-edge wing is tedious andinvolves hundreds, if not thousands, of design iterations to narrow down a single design.
Add in the complexities of supersonic flow and the challenge increases exponentially.
One possible, and often common, pathway for this design is to jump straight into detailed
volume grid computational fluid dynamics (CFD), in which the physics of supersonic
flow are modeled directly but at a high computational cost and thus an incredibly long
design process. Classical aerodynamics experts have published work describing a process
which can be followed which might bypass the need for detailed CFD altogether.

This work outlines how successfully a simple vortex lattice panel method CFDcode can be used in the design process for a Mach 1.3 cruise speed airline wing concept.
Specifically, the success of the wing design is measured in its ability to operate subcritically (i.e. free of shock waves) even in a free stream flow which is faster than the
speed of sound. By using a modified version of Simple Sweep Theory, design goals are
described almost entirely based on defined critical pressure coefficients and critical Mach
numbers. The marks of a well-designed wing are discussed in depth and how these traits
will naturally lend themselves to a well-suited supersonic wing.

Unfortunately, inconsistencies with the published work are revealed by detailedCFD validation runs to be extensive and large in magnitude. These inconsistencies likely
have roots in several concepts related to supersonic compressible flow which are
explored in detail. The conclusion is made that the theory referenced in this work by the
classical aerodynamicists is incorrect and/or incomplete. The true explanation for the
perplexing shock wave phenomenon observed certainly lies in some convolution of the
factors discussed in this thesis. Much work can still be performed in the way of creating
an empirical model for shock wave formation across a highly swept wing with blunt
leading-edge airfoils.
ContributorsKurus, Noah John (Author) / Takahashi, Timothy (Thesis advisor) / Benson, David (Committee member) / Niemczyk, Mary (Committee member) / Arizona State University (Publisher)
Created2020
131986-Thumbnail Image.png
Description
An experimental investigation was conducted to calculate the aerodynamic drag on a cyclist wearing different types of clothing. The different outfits worn for this experiment were a professional skinsuit, a professional cycling kit, a t-shirt and shorts, and a long-sleeved flannel and jeans. The aerodynamic drag was ultimately found using

An experimental investigation was conducted to calculate the aerodynamic drag on a cyclist wearing different types of clothing. The different outfits worn for this experiment were a professional skinsuit, a professional cycling kit, a t-shirt and shorts, and a long-sleeved flannel and jeans. The aerodynamic drag was ultimately found using the coast down method, a process in which a cyclist increases their speed to a chosen maximum threshold, and upon reaching this speed, ceases the pedal stroke and maintains the aero position until the bicycle comes to a stop. The data was gathered using an AeroPod, speed sensor, and GPS unit. The data gathered was imported into Excel for data analysis. The average CdA values at race speed (26-30 ft/s) for the skinsuit, cycling kit, t-shirt and shorts, and flannel were calculated to be 4.180 ft2, 3.668 ft2, 4.884 ft2, and 4.223 ft2, respectively. These race speed averages were found using data from three separate Ironman Triathlons. The cycling kit was found to be the most aerodynamic at the race speed. The results of this study reveal that cycling apparel can only be optimized for a small range of speeds and cycling outside of this optimal range delays the initiation of the reduction of boundary layer separation, thus resulting in more critical time spent in the flow transition region. The skinsuit’s performance was more aerodynamically efficient than the cycling kit at speeds greater than 36.8 mph. The cycling kit is more aerodynamic for speeds slower than 36.8 mph. The slickness of the skinsuit was found to be detrimental to the cyclist’s aerodynamic drag, as the lack of roughness on the skinsuit prevented the initiation of turbulent flow, which results in a decrease in drag. Overall, the experiment confirmed the hypothesis that a cyclist is more aerodynamic when wearing cycling apparel as opposed to casual, loose-fitting clothing.
ContributorsGlynn, Julia Daniel (Co-author) / Duffy, Kyle (Co-author) / Takahashi, Timothy (Thesis director) / Bergmann, Ande (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
131763-Thumbnail Image.png
Description
The goal of this thesis project was to build an understanding of supersonic projectile dynamics through the creation of a trajectory model that incorporates several different aerodynamic concepts and builds a criteria for the stability of a projectile. This was done iteratively where the model was built from a foundation

The goal of this thesis project was to build an understanding of supersonic projectile dynamics through the creation of a trajectory model that incorporates several different aerodynamic concepts and builds a criteria for the stability of a projectile. This was done iteratively where the model was built from a foundation of kinematics with various aerodynamic principles being added incrementally. The primary aerodynamic principle that influenced the trajectory of the projectile was in the coefficient of drag. The drag coefficient was split into three primary components: the form drag, skin friction drag, and base pressure drag. These together made up the core of the model, additional complexity served to increase the accuracy of the model and generalize to different projectile profiles.
ContributorsBlair, Martin (Co-author) / Armenta, Francisco (Co-author) / Takahashi, Timothy (Thesis director) / Herrmann, Marcus (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
166193-Thumbnail Image.png
Description
This experiment investigated the effects of different vortex generator sizes and configurations on the induced drag of a 2006 Honda Accord, with comparisons to a control test. Tuft tests were carried out prior to any data collection. The tufts were placed along the roof and rear window of the vehicle

This experiment investigated the effects of different vortex generator sizes and configurations on the induced drag of a 2006 Honda Accord, with comparisons to a control test. Tuft tests were carried out prior to any data collection. The tufts were placed along the roof and rear window of the vehicle for each of the five vortex generator types. Video was taken of the tufts for each set of vortex generators, allowing a visual comparison of the flow characteristics with comparison to the control. Out of the four vortex generators tested, the two that yielded the most substantial change in the flow characteristics were utilized. The data collection was conducted utilizing the two sets of vortex generators, one large and one small, placed in three different locations along the roof of the vehicle. Over a course of four trials of data collection, each vortex generator size and configuration was tested two times along a stretch of Interstate 60, with each data set consisting of five minutes heading east, followed by five minutes heading west. Several experimental parameters were collected using an OBD II Bluetooth Adaptor, which were logged using the software compatible with the adaptor. This data was parsed and analyzed in Microsoft Excel and MATLAB. Utilizing an Analysis of Variance (ANOVA) analytical scheme, the data was generalized to account for terrain changes, steady state speed fluctuations, and weather changes per night. Overall, upon analysis of the data, the vortex generators showed little-to-no benefit to either the fuel efficiency or engine load experienced by the vehicle during the duration of the experiment. This result, while unexpected, is substantial as it shows that the expenditure of purchasing these vortex generators for this make and model of vehicle, and potentially other similar vehicles, is unnecessary as it produces no meaningful benefit.
ContributorsMazza, Seth (Author) / Walther, Chase (Co-author) / Takahashi, Timothy (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
166194-Thumbnail Image.png
Description
This experiment investigated the effects of different vortex generator sizes and configurations on the induced drag of a 2006 Honda Accord, with comparisons to a control test. Tuft tests were carried out prior to any data collection. The tufts were placed along the roof and rear window of the vehicle

This experiment investigated the effects of different vortex generator sizes and configurations on the induced drag of a 2006 Honda Accord, with comparisons to a control test. Tuft tests were carried out prior to any data collection. The tufts were placed along the roof and rear window of the vehicle for each of the five vortex generator types. Video was taken of the tufts for each set of vortex generators, allowing a visual comparison of the flow characteristics with comparison to the control. Out of the four vortex generators tested, the two that yielded the most substantial change in the flow characteristics were utilized. The data collection was conducted utilizing the two sets of vortex generators, one large and one small, placed in three different locations along the roof of the vehicle. Over a course of four trials of data collection, each vortex generator size and configuration was tested two times along a stretch of Interstate 60, with each data set consisting of five minutes heading east, followed by five minutes heading west. Several experimental parameters were collected using an OBD II Bluetooth Adaptor, which were logged using the software compatible with the adaptor. This data was parsed and analyzed in Microsoft Excel and MATLAB. Utilizing an Analysis of Variance (ANOVA) analytical scheme, the data was generalized to account for terrain changes, steady state speed fluctuations, and weather changes per night. Overall, upon analysis of the data, the vortex generators showed little-to-no benefit to either the fuel efficiency or engine load experienced by the vehicle during the duration of the experiment. This result, while unexpected, is substantial as it shows that the expenditure of purchasing these vortex generators for this make and model of vehicle, and potentially other similar vehicles, is unnecessary as it produces no meaningful benefit.
ContributorsWalther, Chase (Author) / Mazza, Seth (Co-author) / Takahashi, Timothy (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05