Matching Items (34)
Filtering by

Clear all filters

133366-Thumbnail Image.png
Description
The objective of this project was to design an electrically driven centrifugal pump for the Daedalus Astronautics @ASU hybrid rocket engine (HRE). The pump design was purposefully simplified due to time, fabrication, calculation, and capability constraints, which resulted in a lower fidelity design, with the option to be improved later.

The objective of this project was to design an electrically driven centrifugal pump for the Daedalus Astronautics @ASU hybrid rocket engine (HRE). The pump design was purposefully simplified due to time, fabrication, calculation, and capability constraints, which resulted in a lower fidelity design, with the option to be improved later. The impeller, shroud, volute, shaft, motor, and ESC were the main focuses of the pump assembly, but the seals, bearings, lubrication methods, and flow path connections were considered as elements which would require future attention. The resulting pump design is intended to be used on the Daedalus Astronautics HRE test cart for design verification. In the future, trade studies and more detailed analyses should and will be performed before this pump is integrated into the Daedalus Astronautics flight-ready HRE.
ContributorsShillingburg, Ryan Carl (Author) / White, Daniel (Thesis director) / Brunacini, Lauren (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134285-Thumbnail Image.png
Description
This experiment used hotwire anemometry to examine the von Kármán vortex street and how different surface conditions affect the wake profile of circular airfoils, or bluff bodies. Specifically, this experiment investigated how the various surface conditions affected the shedding frequency and Strouhal Number of the vortex street as Reynolds Number

This experiment used hotwire anemometry to examine the von Kármán vortex street and how different surface conditions affect the wake profile of circular airfoils, or bluff bodies. Specifically, this experiment investigated how the various surface conditions affected the shedding frequency and Strouhal Number of the vortex street as Reynolds Number is increased. The cylinders tested varied diameter, surface finish, and wire wrapping. Larger diameters corresponded with lower shedding frequencies, rougher surfaces decreased Strouhal Number, and the addition of thick wires to the surface of the cylinder completely disrupted the vortex shedding to the point where there was almost no dominant shedding frequency. For the smallest diameter cylinder tested, secondary dominant frequencies were observed, suggesting harmonics.
ContributorsCoote, Peter John (Author) / Takahashi, Timothy (Thesis director) / White, Daniel (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133963-Thumbnail Image.png
Description
Active flow control for airfoil designs has been researched for the past few decades. This has been achieved through steady blowing, pulsed blowing, synthetic jets, and plasma jets. These techniques have been applied to both single and dual jet configurations. This technology was examined for a wind turbine blade application

Active flow control for airfoil designs has been researched for the past few decades. This has been achieved through steady blowing, pulsed blowing, synthetic jets, and plasma jets. These techniques have been applied to both single and dual jet configurations. This technology was examined for a wind turbine blade application so that lift and drag can be altered without needing a mechanical flap. Research was completed to also allow for thicker airfoils with more blunt trailing edges that result in the higher structural strength needed for large, heavy wind turbine blades without the negative aerodynamic effects such as boundary layer separation. This research tested steady blowing in a dual jet configuration for the S830 airfoil from the National Renewable Energy Laboratory (NREL) database of airfoils. Computational Fluid Dynamics was used in the software Ansys Fluent. Calculations were completed for a modified S830 airfoil with a rounded trailing edge surface at momentum coefficients of 0.01 for the lower jet and 0.1, 0.12, and 0.14 for the upper jet. These results were then compared to the original S830 results for the lift over drag efficiency. The design with momentum coefficients of 0.12 for the upper surface resulted in the highest increase in efficiency of 53% at an angle of attack of 12 degrees. At this momentum coefficient, the angle of attack where zero lift occurred was at -8.62 degrees, compared to the case with no blowing at -1.90 degrees. From previous research and research completed in this thesis it was concluded that active flow control is an effective technique to improve wind turbine energy collection.
ContributorsStapleton, Paige (Author) / Mertz, Benjamin (Thesis director) / Herrmann, Marcus (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
136996-Thumbnail Image.png
Description
The emerging market for unmanned aerial vehicles, or UAV's, demands the development of effective design tools for small-scale aircraft. This research seeks to validate a previously developed drag build-up method for small air vehicles. Using the method, a drag prediction was made for an off-the-shelf, remotely controlled aircraft. The Oswald

The emerging market for unmanned aerial vehicles, or UAV's, demands the development of effective design tools for small-scale aircraft. This research seeks to validate a previously developed drag build-up method for small air vehicles. Using the method, a drag prediction was made for an off-the-shelf, remotely controlled aircraft. The Oswald efficiency was predicted to be 0.852. Flight tests were then conducted using the RC plane, and the aircraft performance data was compared with the predicted performance data. Although there were variations in the data due to flight conditions and equipment, the drag build up method was capable of predicting the aircraft's drag. The experimental Oswald efficiency was found to be 0.863 with an error of 1.27%. As for the CDp the prediction of 0.0477 was comparable to the experimental value of 0.0424. Moving forward this method can be used to create conceptual designs of UAV's to explore the most efficient designs, without the need to build a model.
ContributorsGavin, Tyler Joseph (Author) / Wells, Valana (Thesis director) / Garrett, Fred (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
137098-Thumbnail Image.png
Description
This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work

This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work to render the Stentzor deployable in live subjects, including [1] further design optimization, [2] electrical isolation, [3] wireless data transmission, and [4] testing for aneurysm prevention.
ContributorsMeidinger, Aaron Michael (Author) / LaBelle, Jeffrey (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
134604-Thumbnail Image.png
Description
In this analysis, materials capable of being 3D printed such as acrylonitrile-butadiene styrene (ABS), polyethylene terephthalate-glycol (PETG), and polylactic acid (PLA) were analyzed mathematically to determine their potential application as a fuel source for a hybrid rocket engine currently being developed by Daedalus Astronautics. By developing a 3D printed fuel

In this analysis, materials capable of being 3D printed such as acrylonitrile-butadiene styrene (ABS), polyethylene terephthalate-glycol (PETG), and polylactic acid (PLA) were analyzed mathematically to determine their potential application as a fuel source for a hybrid rocket engine currently being developed by Daedalus Astronautics. By developing a 3D printed fuel option, new fuel grain geometries can be manufactured and tested that have the potential to greatly improve regression and flow characteristics of hybrid rockets. In addition, 3D printed grains have been shown to greatly reduce manufacturing time while improving grain-to-grain consistency. In the end, it was found that ABS, although the most difficult material to work with, would likely provide the best results as compared to an HTPB baseline. This is because after conducting a heat conservation analysis similar to that employed by NASA's chemical equilibrium with applications code (CEA), ABS was shown to operate at similarly high levels of specific impulse at approximately the same oxidizer-to-fuel ratio, meaning the current Daedalus test setup for HTPB would be applicable to ABS. In addition, PLA was found to require a far lower oxidizer-to-fuel ratio to achieve peak specific impulse than any of the other fuels analyzed leading to the conclusion that in a flight-ready engine it would likely require less oxidizer and pressurization mass, and therefore, less overall system mass, to achieve thrust levels similar to ABS and HTPB. By improving the thrust-to-weight ratio in this way a more efficient engine could be developed. Following these results, future works will include the hot-fire testing of the four fuel options to verify the analysis method used. Additionally, the ground work has been set for future analysis and development of complex fuel port geometries which have been shown to further improve flight characteristics.
ContributorsWinsryg, Benjamin Rolf (Author) / White, Daniel (Thesis director) / Brunacini, Lauren (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134463-Thumbnail Image.png
Description
Automobiles can advance greatly with the introduction of metal additive manufactured components. Additive tooling is slowly becoming additive manufacturing and someday the technology will be advanced enough that high volume can be supported. This research was conducted in order to show the advantages metal additive manufacturing has in the automobile

Automobiles can advance greatly with the introduction of metal additive manufactured components. Additive tooling is slowly becoming additive manufacturing and someday the technology will be advanced enough that high volume can be supported. This research was conducted in order to show the advantages metal additive manufacturing has in the automobile industry. One large advantage to metal additive manufacturing is mass reduction. Components can be designed for production with different geometries than other manufacturing methods. The change in geometry can significantly reduce the product volume and therefore mass. Overall, mass reduction in the automotive industry is beneficial. Mass reduction can increase performance and fuel economy of the car. Once metal additive manufacturing becomes capable of higher production, metal additive manufacturing will play a major role in automobile manufacturing. Research was conducted to design and produce an optimized AC compressor bracket. The bracket was designed to the specifications of the OEM component, and the mass was reduced by more than half.
ContributorsSawyer, Brenton James (Author) / Hsu, Keng (Thesis director) / Parsey, John (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134678-Thumbnail Image.png
Description
Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm

Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm to aid workers performing box lifting types of tasks. Existing products aimed at improving worker comfort and productivity typically employ either fully powered exoskeleton suits or utilize minimally powered spring arms and/or fixtures. These designs either reduce stress to the user's body through powered arms and grippers operated via handheld controls which have limited functionality, or they use a more minimal setup that reduces some load, but exposes the user's hands and wrists to injury by directing support to the forearm. The design proposed here seeks to strike a balance between size, weight, and power requirements and also proposes a novel wrist exoskeleton design which minimizes stress on the user's wrists by directly interfacing with the object to be picked up. The design of the wrist exoskeleton was approached through initially selecting degrees of freedom and a ROM (range of motion) to accommodate. Feel and functionality were improved through an iterative prototyping process which yielded two primary designs. A novel "clip-in" method was proposed to allow the user to easily attach and detach from the exoskeleton. Designs utilized a contact surface intended to be used with dry fibrillary adhesives to maximize exoskeleton grip. Two final designs, which used two pivots in opposite kinematic order, were constructed and tested to determine the best kinematic layout. The best design had two prototypes created to be worn with passive test arms that attached to the user though a specially designed belt.
ContributorsGreason, Kenneth Berend (Author) / Sugar, Thomas (Thesis director) / Holgate, Matthew (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133322-Thumbnail Image.png
Description
Each year, the CanSat Competition organizers release aerospace based engineering mission objectives for collegiate teams to compete in. This year, the design is an aerodynamically stable probe that will descend from an altitude of 725 meters at a rate between 10-30 meters/sec until it reaches an altitude of 300 meters,

Each year, the CanSat Competition organizers release aerospace based engineering mission objectives for collegiate teams to compete in. This year, the design is an aerodynamically stable probe that will descend from an altitude of 725 meters at a rate between 10-30 meters/sec until it reaches an altitude of 300 meters, where it will then release a parachute as its aerobraking mechanism as it descends at 5 meters/sec until it reaches the ground. The focus of this paper is to investigate the design of the probe itself and how slender body theory and cross flow drag affect the lift and aerodynamic stability of this bluff body. A tool is developed inside of MATLAB which calculates the slender body lift as well as the lift from the cross flow drag. It then uses that information to calculate the total moment about the center of gravity for a range of angles of attack and free stream velocities. This tool is then used to optimize the geometry of the probe. These geometries are used to construct a prototype and that prototype is tested by a drop test from a 6-story building. The initial tests confirm the calculations that the probe, bluff body, is stable and self-correcting in its descent. Future work involves more high-altitude and ground-level tests that will further verify and improve on the current design.
ContributorsMcCourt, Anthony Michael (Author) / Takahashi, Timothy (Thesis director) / Herrmann, Marcus (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133666-Thumbnail Image.png
Description
Shape Memory Polymers (SMPs) are smart polyurethane thermoplastics that can recover their original shape after undergoing deformation. This shape recovery can be actuated by raising the SMP above its glass transition temperature, Tg. This report outlines a process for repeatedly recycling SMPs using 3D printing. Cubes are printed, broken down

Shape Memory Polymers (SMPs) are smart polyurethane thermoplastics that can recover their original shape after undergoing deformation. This shape recovery can be actuated by raising the SMP above its glass transition temperature, Tg. This report outlines a process for repeatedly recycling SMPs using 3D printing. Cubes are printed, broken down into pellets mechanically, and re-extruded into filament. This simulates a recycling iteration that the material would undergo in industry. The samples are recycled 0, 1, 3, and 5 times, then printed into rectangular and dog-bone shapes. These shapes are used to perform dynamic mechanical analysis (DMA) and 3-point bending for shape recovery testing. Samples will also be used for scanning electron microscopy (SEM) to characterize their microstructure.
ContributorsSweeney, Andrew Joseph (Author) / Yekani Fard, Masoud (Thesis director) / Chattopadhyay, Aditi (Committee member) / W.P. Carey School of Business (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05