Matching Items (8)
Filtering by

Clear all filters

152590-Thumbnail Image.png
Description
Access control is necessary for information assurance in many of today's applications such as banking and electronic health record. Access control breaches are critical security problems that can result from unintended and improper implementation of security policies. Security testing can help identify security vulnerabilities early and avoid unexpected expensive cost

Access control is necessary for information assurance in many of today's applications such as banking and electronic health record. Access control breaches are critical security problems that can result from unintended and improper implementation of security policies. Security testing can help identify security vulnerabilities early and avoid unexpected expensive cost in handling breaches for security architects and security engineers. The process of security testing which involves creating tests that effectively examine vulnerabilities is a challenging task. Role-Based Access Control (RBAC) has been widely adopted to support fine-grained access control. However, in practice, due to its complexity including role management, role hierarchy with hundreds of roles, and their associated privileges and users, systematically testing RBAC systems is crucial to ensure the security in various domains ranging from cyber-infrastructure to mission-critical applications. In this thesis, we introduce i) a security testing technique for RBAC systems considering the principle of maximum privileges, the structure of the role hierarchy, and a new security test coverage criterion; ii) a MTBDD (Multi-Terminal Binary Decision Diagram) based representation of RBAC security policy including RHMTBDD (Role Hierarchy MTBDD) to efficiently generate effective positive and negative security test cases; and iii) a security testing framework which takes an XACML-based RBAC security policy as an input, parses it into a RHMTBDD representation and then generates positive and negative test cases. We also demonstrate the efficacy of our approach through case studies.
ContributorsGupta, Poonam (Author) / Ahn, Gail-Joon (Thesis advisor) / Collofello, James (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2014
152495-Thumbnail Image.png
Description
Attribute Based Access Control (ABAC) mechanisms have been attracting a lot of interest from the research community in recent times. This is especially because of the flexibility and extensibility it provides by using attributes assigned to subjects as the basis for access control. ABAC enables an administrator of a server

Attribute Based Access Control (ABAC) mechanisms have been attracting a lot of interest from the research community in recent times. This is especially because of the flexibility and extensibility it provides by using attributes assigned to subjects as the basis for access control. ABAC enables an administrator of a server to enforce access policies on the data, services and other such resources fairly easily. It also accommodates new policies and changes to existing policies gracefully, thereby making it a potentially good mechanism for implementing access control in large systems, particularly in today's age of Cloud Computing. However management of the attributes in ABAC environment is an area that has been little touched upon. Having a mechanism to allow multiple ABAC based systems to share data and resources can go a long way in making ABAC scalable. At the same time each system should be able to specify their own attribute sets independently. In the research presented in this document a new mechanism is proposed that would enable users to share resources and data in a cloud environment using ABAC techniques in a distributed manner. The focus is mainly on decentralizing the access policy specifications for the shared data so that each data owner can specify the access policy independent of others. The concept of ontologies and semantic web is introduced in the ABAC paradigm that would help in giving a scalable structure to the attributes and also allow systems having different sets of attributes to communicate and share resources.
ContributorsPrabhu Verleker, Ashwin Narayan (Author) / Huang, Dijiang (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Dasgupta, Partha (Committee member) / Arizona State University (Publisher)
Created2014
153032-Thumbnail Image.png
Description
Most existing security decisions for both defending and attacking are made based on some deterministic approaches that only give binary answers. Even though these approaches can achieve low false positive rate for decision making, they have high false negative rates due to the lack of accommodations to new attack methods

Most existing security decisions for both defending and attacking are made based on some deterministic approaches that only give binary answers. Even though these approaches can achieve low false positive rate for decision making, they have high false negative rates due to the lack of accommodations to new attack methods and defense techniques. In this dissertation, I study how to discover and use patterns with uncertainty and randomness to counter security challenges. By extracting and modeling patterns in security events, I am able to handle previously unknown security events with quantified confidence, rather than simply making binary decisions. In particular, I cope with the following four real-world security challenges by modeling and analyzing with pattern-based approaches: 1) How to detect and attribute previously unknown shellcode? I propose instruction sequence abstraction that extracts coarse-grained patterns from an instruction sequence and use Markov chain-based model and support vector machines to detect and attribute shellcode; 2) How to safely mitigate routing attacks in mobile ad hoc networks? I identify routing table change patterns caused by attacks, propose an extended Dempster-Shafer theory to measure the risk of such changes, and use a risk-aware response mechanism to mitigate routing attacks; 3) How to model, understand, and guess human-chosen picture passwords? I analyze collected human-chosen picture passwords, propose selection function that models patterns in password selection, and design two algorithms to optimize password guessing paths; and 4) How to identify influential figures and events in underground social networks? I analyze collected underground social network data, identify user interaction patterns, and propose a suite of measures for systematically discovering and mining adversarial evidence. By solving these four problems, I demonstrate that discovering and using patterns could help deal with challenges in computer security, network security, human-computer interaction security, and social network security.
ContributorsZhao, Ziming (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Huang, Dijiang (Committee member) / Santanam, Raghu (Committee member) / Arizona State University (Publisher)
Created2014
149858-Thumbnail Image.png
Description
This dissertation is focused on building scalable Attribute Based Security Systems (ABSS), including efficient and privacy-preserving attribute based encryption schemes and applications to group communications and cloud computing. First of all, a Constant Ciphertext Policy Attribute Based Encryption (CCP-ABE) is proposed. Existing Attribute Based Encryption (ABE) schemes usually incur large,

This dissertation is focused on building scalable Attribute Based Security Systems (ABSS), including efficient and privacy-preserving attribute based encryption schemes and applications to group communications and cloud computing. First of all, a Constant Ciphertext Policy Attribute Based Encryption (CCP-ABE) is proposed. Existing Attribute Based Encryption (ABE) schemes usually incur large, linearly increasing ciphertext. The proposed CCP-ABE dramatically reduces the ciphertext to small, constant size. This is the first existing ABE scheme that achieves constant ciphertext size. Also, the proposed CCP-ABE scheme is fully collusion-resistant such that users can not combine their attributes to elevate their decryption capacity. Next step, efficient ABE schemes are applied to construct optimal group communication schemes and broadcast encryption schemes. An attribute based Optimal Group Key (OGK) management scheme that attains communication-storage optimality without collusion vulnerability is presented. Then, a novel broadcast encryption model: Attribute Based Broadcast Encryption (ABBE) is introduced, which exploits the many-to-many nature of attributes to dramatically reduce the storage complexity from linear to logarithm and enable expressive attribute based access policies. The privacy issues are also considered and addressed in ABSS. Firstly, a hidden policy based ABE schemes is proposed to protect receivers' privacy by hiding the access policy. Secondly,a new concept: Gradual Identity Exposure (GIE) is introduced to address the restrictions of hidden policy based ABE schemes. GIE's approach is to reveal the receivers' information gradually by allowing ciphertext recipients to decrypt the message using their possessed attributes one-by-one. If the receiver does not possess one attribute in this procedure, the rest of attributes are still hidden. Compared to hidden-policy based solutions, GIE provides significant performance improvement in terms of reducing both computation and communication overhead. Last but not least, ABSS are incorporated into the mobile cloud computing scenarios. In the proposed secure mobile cloud data management framework, the light weight mobile devices can securely outsource expensive ABE operations and data storage to untrusted cloud service providers. The reported scheme includes two components: (1) a Cloud-Assisted Attribute-Based Encryption/Decryption (CA-ABE) scheme and (2) An Attribute-Based Data Storage (ABDS) scheme that achieves information theoretical optimality.
ContributorsZhou, Zhibin (Author) / Huang, Dijiang (Thesis advisor) / Yau, Sik-Sang (Committee member) / Ahn, Gail-Joon (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2011
150827-Thumbnail Image.png
Description
In modern healthcare environments, there is a strong need to create an infrastructure that reduces time-consuming efforts and costly operations to obtain a patient's complete medical record and uniformly integrates this heterogeneous collection of medical data to deliver it to the healthcare professionals. As a result, healthcare providers are more

In modern healthcare environments, there is a strong need to create an infrastructure that reduces time-consuming efforts and costly operations to obtain a patient's complete medical record and uniformly integrates this heterogeneous collection of medical data to deliver it to the healthcare professionals. As a result, healthcare providers are more willing to shift their electronic medical record (EMR) systems to clouds that can remove the geographical distance barriers among providers and patient. Even though cloud-based EMRs have received considerable attention since it would help achieve lower operational cost and better interoperability with other healthcare providers, the adoption of security-aware cloud systems has become an extremely important prerequisite for bringing interoperability and efficient management to the healthcare industry. Since a shared electronic health record (EHR) essentially represents a virtualized aggregation of distributed clinical records from multiple healthcare providers, sharing of such integrated EHRs may comply with various authorization policies from these data providers. In this work, we focus on the authorized and selective sharing of EHRs among several parties with different duties and objectives that satisfies access control and compliance issues in healthcare cloud computing environments. We present a secure medical data sharing framework to support selective sharing of composite EHRs aggregated from various healthcare providers and compliance of HIPAA regulations. Our approach also ensures that privacy concerns need to be accommodated for processing access requests to patients' healthcare information. To realize our proposed approach, we design and implement a cloud-based EHRs sharing system. In addition, we describe case studies and evaluation results to demonstrate the effectiveness and efficiency of our approach.
ContributorsWu, Ruoyu (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2012
135099-Thumbnail Image.png
Description
Smartphone privacy is a growing concern around the world; smartphone applications routinely take personal information from our phones and monetize it for their own profit. Worse, they're doing it legally. The Terms of Service allow companies to use this information to market, promote, and sell personal data. Most users seem

Smartphone privacy is a growing concern around the world; smartphone applications routinely take personal information from our phones and monetize it for their own profit. Worse, they're doing it legally. The Terms of Service allow companies to use this information to market, promote, and sell personal data. Most users seem to be either unaware of it, or unconcerned by it. This has negative implications for the future of privacy, particularly as the idea of smart home technology becomes a reality. If this is what privacy looks like now, with only one major type of smart device on the market, what will the future hold, when the smart home systems come into play. In order to examine this question, I investigated how much awareness/knowledge smartphone users of a specific demographic (millennials aged 18-25) knew about their smartphone's data and where it goes. I wanted three questions answered: - For what purposes do millennials use their smartphones? - What do they know about smartphone privacy and security? - How will this affect the future of privacy? To accomplish this, I gathered information using a distributed survey to millennials attending Arizona State University. Using statistical analysis, I exposed trends for this demographic, discovering that there isn't a lack of knowledge among millennials; most are aware that smartphone apps can collect and share data and many of the participants are not comfortable with the current state of smartphone privacy. However, more than half of the study participants indicated that they never read an app's Terms of Service. Due to the nature of the privacy vs. convenience argument, users will willingly agree to let apps take their personal in- formation, since they don't want to give up the convenience.
ContributorsJones, Scott Spenser (Author) / Atkinson, Robert (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154095-Thumbnail Image.png
Description
Smartphones are pervasive nowadays. They are supported by mobile platforms that allow users to download and run feature-rich mobile applications (apps). While mobile apps help users conveniently process personal data on mobile devices, they also pose security and privacy threats and put user's data at risk. Even though modern mobile

Smartphones are pervasive nowadays. They are supported by mobile platforms that allow users to download and run feature-rich mobile applications (apps). While mobile apps help users conveniently process personal data on mobile devices, they also pose security and privacy threats and put user's data at risk. Even though modern mobile platforms such as Android have integrated security mechanisms to protect users, most mechanisms do not easily adapt to user's security requirements and rapidly evolving threats. They either fail to provide sufficient intelligence for a user to make informed security decisions, or require great sophistication to configure the mechanisms for enforcing security decisions. These limitations lead to a situation where users are disadvantageous against emerging malware on modern mobile platforms. To remedy this situation, I propose automated and systematic approaches to address three security management tasks: monitoring, assessment, and confinement of mobile apps. In particular, monitoring apps helps a user observe and record apps' runtime behaviors as controlled under security mechanisms. Automated assessment distills intelligence from the observed behaviors and the security configurations of security mechanisms. The distilled intelligence further fuels enhanced confinement mechanisms that flexibly and accurately shape apps' behaviors. To demonstrate the feasibility of my approaches, I design and implement a suite of proof-of-concept prototypes that support the three tasks respectively.
ContributorsJing, Yiming (Author) / Ahn, Gail-Joon (Thesis advisor) / Doupe, Adam (Committee member) / Huang, Dijiang (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2015
155819-Thumbnail Image.png
Description
Today the information technology systems have addresses, software stacks and other configuration remaining unchanged for a long period of time. This paves way for malicious attacks in the system from unknown vulnerabilities. The attacker can take advantage of this situation and plan their attacks with sufficient time. To protect our

Today the information technology systems have addresses, software stacks and other configuration remaining unchanged for a long period of time. This paves way for malicious attacks in the system from unknown vulnerabilities. The attacker can take advantage of this situation and plan their attacks with sufficient time. To protect our system from this threat, Moving Target Defense is required where the attack surface is dynamically changed, making it difficult to strike.

In this thesis, I incorporate live migration of Docker container using CRIU (checkpoint restore) for moving target defense. There are 460K Dockerized applications, a 3100% growth over 2 years[1]. Over 4 billion containers have been pulled so far from Docker hub. Docker is supported by a large and fast growing community of contributors and users. As an example, there are 125K Docker Meetup members worldwide. As we see industry adapting to Docker rapidly, a moving target defense solution involving containers is beneficial for being robust and fast. A proof of concept implementation is included for studying performance attributes of Docker migration.

The detection of attack is using a scenario involving definitions of normal events on servers. By defining system activities, and extracting syslog in centralized server, attack can be detected via extracting abnormal activates and this detection can be a trigger for the Docker migration.
ContributorsBohara, Bhakti (Author) / Huang, Dijiang (Thesis advisor) / Doupe, Adam (Committee member) / Zhao, Ziming (Committee member) / Arizona State University (Publisher)
Created2017