Matching Items (2)
Filtering by

Clear all filters

151558-Thumbnail Image.png
Description
Monte Carlo methods often used in nuclear physics, such as auxiliary field diffusion Monte Carlo and Green's function Monte Carlo, have typically relied on phenomenological local real-space potentials containing as few derivatives as possible, such as the Argonne-Urbana family of interactions, to make sampling simple and efficient. Basis set methods

Monte Carlo methods often used in nuclear physics, such as auxiliary field diffusion Monte Carlo and Green's function Monte Carlo, have typically relied on phenomenological local real-space potentials containing as few derivatives as possible, such as the Argonne-Urbana family of interactions, to make sampling simple and efficient. Basis set methods such as no-core shell model or coupled-cluster techniques typically use softer non-local potentials because of their more rapid convergence with basis set size. These non-local potentials are typically defined in momentum space and are often based on effective field theory. Comparisons of the results of the two types of methods are complicated by the use of different potentials. This thesis discusses progress made in using such non-local potentials in quantum Monte Carlo calculations of light nuclei. In particular, it shows methods for evaluating the real-space, imaginary-time propagators needed to perform quantum Monte Carlo calculations using non-local potentials and universality properties of these propagators, how to formulate a good trial wave function for non-local potentials, and how to perform a "one-step" Green's function Monte Carlo calculation for non-local potentials.
ContributorsLynn, Joel E (Author) / Schmidt, Kevin E (Thesis advisor) / Alarcon, Ricardo (Committee member) / Lebed, Richard (Committee member) / Shovkovy, Igor (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2013
158542-Thumbnail Image.png
Description
I describe the first continuous space nuclear path integral quantum Monte Carlo method, and calculate the ground state properties of light nuclei including Deuteron, Triton, Helium-3 and Helium-4, using both local chiral interaction up to next-to-next-to-leading-order and the Argonne $v_6'$ interaction. Compared with diffusion based quantum Monte Carlo methods such

I describe the first continuous space nuclear path integral quantum Monte Carlo method, and calculate the ground state properties of light nuclei including Deuteron, Triton, Helium-3 and Helium-4, using both local chiral interaction up to next-to-next-to-leading-order and the Argonne $v_6'$ interaction. Compared with diffusion based quantum Monte Carlo methods such as Green's function Monte Carlo and auxiliary field diffusion Monte Carlo, path integral quantum Monte Carlo has the advantage that it can directly calculate the expectation value of operators without tradeoff, whether they commute with the Hamiltonian or not. For operators that commute with the Hamiltonian, e.g., the Hamiltonian itself, the path integral quantum Monte Carlo light-nuclei results agree with Green's function Monte Carlo and auxiliary field diffusion Monte Carlo results. For other operator expectations which are important to understand nuclear measurements but do not commute with the Hamiltonian and therefore cannot be accurately calculated by diffusion based quantum Monte Carlo methods without tradeoff, the path integral quantum Monte Carlo method gives reliable results. I show root-mean-square radii, one-particle number density distributions, and Euclidean response functions for single-nucleon couplings. I also systematically describe all the sampling algorithms used in this work, the strategies to make the computation efficient, the error estimations, and the details of the implementation of the code to perform calculations. This work can serve as a benchmark test for future calculations of larger nuclei or finite temperature nuclear matter using path integral quantum Monte Carlo.
ContributorsChen, Rong (Author) / Schmidt, Kevin E (Thesis advisor) / Alarcon, Ricardo O (Committee member) / Beckstein, Oliver (Committee member) / Comfort, Joseph R. (Committee member) / Shovkovy, Igor A. (Committee member) / Arizona State University (Publisher)
Created2020