Matching Items (8)
Filtering by

Clear all filters

Description
As the application of interactive media systems expands to address broader problems in health, education and creative practice, they fall within a higher dimensional space for which it is inherently more complex to design. In response to this need an emerging area of interactive system design, referred to as experiential

As the application of interactive media systems expands to address broader problems in health, education and creative practice, they fall within a higher dimensional space for which it is inherently more complex to design. In response to this need an emerging area of interactive system design, referred to as experiential media systems, applies hybrid knowledge synthesized across multiple disciplines to address challenges relevant to daily experience. Interactive neurorehabilitation (INR) aims to enhance functional movement therapy by integrating detailed motion capture with interactive feedback in a manner that facilitates engagement and sensorimotor learning for those who have suffered neurologic injury. While INR shows great promise to advance the current state of therapies, a cohesive media design methodology for INR is missing due to the present lack of substantial evidence within the field. Using an experiential media based approach to draw knowledge from external disciplines, this dissertation proposes a compositional framework for authoring visual media for INR systems across contexts and applications within upper extremity stroke rehabilitation. The compositional framework is applied across systems for supervised training, unsupervised training, and assisted reflection, which reflect the collective work of the Adaptive Mixed Reality Rehabilitation (AMRR) Team at Arizona State University, of which the author is a member. Formal structures and a methodology for applying them are described in detail for the visual media environments designed by the author. Data collected from studies conducted by the AMRR team to evaluate these systems in both supervised and unsupervised training contexts is also discussed in terms of the extent to which the application of the compositional framework is supported and which aspects require further investigation. The potential broader implications of the proposed compositional framework and methodology are the dissemination of interdisciplinary information to accelerate the informed development of INR applications and to demonstrate the potential benefit of generalizing integrative approaches, merging arts and science based knowledge, for other complex problems related to embodied learning.
ContributorsLehrer, Nicole (Author) / Rikakis, Thanassis (Committee member) / Olson, Loren (Committee member) / Wolf, Steven L. (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2014
156545-Thumbnail Image.png
Description
Adapting to one novel condition of a motor task has been shown to generalize to other naïve conditions (i.e., motor generalization). In contrast, learning one task affects the proficiency of another task that is altogether different (i.e. motor transfer). Much more is known about motor generalization than about motor transfer,

Adapting to one novel condition of a motor task has been shown to generalize to other naïve conditions (i.e., motor generalization). In contrast, learning one task affects the proficiency of another task that is altogether different (i.e. motor transfer). Much more is known about motor generalization than about motor transfer, despite of decades of behavioral evidence. Moreover, motor generalization is studied as a probe to understanding how movements in any novel situations are affected by previous experiences. Thus, one could assume that mechanisms underlying transfer from trained to untrained tasks may be same as the ones known to be underlying motor generalization. However, the direct relationship between transfer and generalization has not yet been shown, thereby limiting the assumption that transfer and generalization rely on the same mechanisms. The purpose of this study was to test whether there is a relationship between motor generalization and motor transfer. To date, ten healthy young adult subjects were scored on their motor generalization ability and motor transfer ability on various upper extremity tasks. Although our current sample size is too small to clearly identify whether there is a relationship between generalization and transfer, Pearson product-moment correlation results and a priori power analysis suggest that a significant relationship will be observed with an increased sample size by 30%. If so, this would suggest that the mechanisms of transfer may be similar to those of motor generalization.
ContributorsSohani, Priyanka (Author) / Schaefer, Sydney (Thesis advisor) / Daliri, Ayoub (Committee member) / Honeycutt, Claire (Committee member) / Arizona State University (Publisher)
Created2018
152077-Thumbnail Image.png
Description
Previous research on gymnastics injuries has examined several differences in the types of injuries and event/location where injury is most likely to occur. This research shows that male gymnasts are more likely to have more upper body injuries compared to lower body injuries whereas female gymnasts are more likely to

Previous research on gymnastics injuries has examined several differences in the types of injuries and event/location where injury is most likely to occur. This research shows that male gymnasts are more likely to have more upper body injuries compared to lower body injuries whereas female gymnasts are more likely to have lower body injuries. The majority of all gymnastics injuries are sprains that are most likely to occur during the landing phase on the floor exercise during routine performance or competition. Gymnastics injuries are also more prevalent in older gymnasts, like those at the collegiate level. However, there is limited research on the effects of limb dominance on injury occurrence in both male and female gymnasts at the collegiate level. This study was designed to examine the effect of both upper and lower body limb dominance on injury occurrence in Division I male and female gymnasts at Arizona State University during competition season. Thirty-seven subjects were recruited from the Arizona State University Men's and Women's Gymnastics teams. Athletic trainers/coaches from each team were asked to record injury incidence during the 2013 competition season from January through April. Injury type, body location, event of occurrence, and location of injury (practice or competition) were recorded along with the gymnast's upper and lower body limb dominance (right or left). Statistical analysis shows that there is a significant difference between male and female gymnasts in that female gymnasts are more likely to be injured than their male counterparts (P = 0.023). However, there were no significant findings between limb dominance and injury incidence. Limb dominance did not show any relationship with side of injury, but a trend in the data shows that right-sided dominant athletes, both upper and lower body, were more likely to be injured overall than left-sided dominant athletes. A trend in the data also shows that injury is more likely to occur on the floor exercise than any other gymnastics event for both men and women.
ContributorsPrice, Callie (Author) / Chisum, Jack (Thesis advisor) / Lee, Chong (Committee member) / Campbell, Kathryn (Committee member) / Woodruff, Larry (Committee member) / Arizona State University (Publisher)
Created2013
149531-Thumbnail Image.png
Description
Virtual environments are used for many physical rehabilitation and therapy purposes with varying degrees of success. An important feature for a therapy environment is the real-time monitoring of a participants' movement performance. Such monitoring can be used to evaluate the environment in addition to the participant's learning. Methods for monitoring

Virtual environments are used for many physical rehabilitation and therapy purposes with varying degrees of success. An important feature for a therapy environment is the real-time monitoring of a participants' movement performance. Such monitoring can be used to evaluate the environment in addition to the participant's learning. Methods for monitoring and evaluation include tracking kinematic performance as well as monitoring muscle and brain activities through EMG and EEG technology. This study aims to observe trends in individual participants' motor learning based on changes in kinematic parameters and use those parameters to characterize different types of learners. This information can then guide EEG/EMG data analysis in the future. The evaluation of motor learning using kinematic parameters of performance typically compares averages of pre- and post-data to identify patterns of changes of various parameters. A key issue with using pre- and post-data is that individual participants perform differently and have different time-courses of learning. Furthermore, different parameters can evolve at independent rates. Finally, there is great variability in the movements at early stages of learning a task. To address these issues, a combined approach is proposed using robust regression, piece-wise regression and correlation to categorize different participant's motor learning. Using the mixed reality rehabilitation system developed at Arizona State University, it was possible to engage participants in motor learning, as revealed by improvements in kinematic parameters. A combination of robust regression, piecewise regression and correlation were used to reveal trends and characterize participants based on motor learning of three kinematic parameters: trajectory error, supination error and the number of phases in the velocity profile.
ContributorsAttygalle, Suneth Satoshi (Author) / He, Jiping (Thesis advisor) / Rikakais, Thanassis (Committee member) / Iasemidis, Leonidas (Committee member) / Arizona State University (Publisher)
Created2010
171649-Thumbnail Image.png
Description
One of the long-standing issues that has arisen in the sports medicine field is identifying the ideal methodology to optimize recovery following anterior cruciate ligament reconstruction (ACLR). The perioperative period for ACLR is notoriously heterogeneous in nature as it consists of many variables that can impact surgical outcomes. While there

One of the long-standing issues that has arisen in the sports medicine field is identifying the ideal methodology to optimize recovery following anterior cruciate ligament reconstruction (ACLR). The perioperative period for ACLR is notoriously heterogeneous in nature as it consists of many variables that can impact surgical outcomes. While there has been extensive literature published regarding the efficacy of various recovery and rehabilitation topics, it has been widely acknowledged that certain modalities within the field of ACLR rehabilitation need further high-quality evidence to support their use in clinical practice, such as blood flow restriction (BFR) training. BFR training involves the application of a tourniquet-like cuff to the proximal aspect of a limb prior to exercise; the cuff is inflated so that it occludes venous flow but allows arterial inflow. BFR is usually combined with low-intensity (LI) resistance training, with resistance as low as 20% of one-repetition maximum (1RM). LI-BFR has been used as an emerging clinical modality to combat postoperative atrophy of the quadriceps muscles for those who have undergone ACLR, as these individuals cannot safely tolerate high muscular tension exercise after surgery. Impairments of the quadriceps are the major cause of poor functional status of patients following an otherwise successful ACLR procedure; however, these impairments can be mitigated with preoperative rehabilitation done before surgery. It was hypothesized that the use of a preoperative LI-BFR training protocol could help improve postoperative outcomes following ACLR; primarily, strength and hypertrophy of the quadriceps. When compared with a SHAM control group, subjects who were randomized to a BFR intervention group made greater preoperative strength gains in the quadriceps and recovered quadriceps mass at an earlier timepoint than that of the SHAM group aftersurgery; however, the gains made in strength were not able to be maintained in the 8-week postoperative period. While these results do not support the use of LI-BFR from the short-term perspective after ACLR, follow-up data will be used to investigate trends in re-injury and return to sport rates to evaluate the efficacy of the use of LI-BFR from a long-term perspective.
ContributorsGlattke, Kaycee Elizabeth (Author) / Lockhart, Thurmon (Thesis advisor) / McDaniel, Troy (Committee member) / Banks, Scott (Committee member) / Peterson, Daniel (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2022
161512-Thumbnail Image.png
Description
Stroke occurs when the blood supply to part of the brain is interrupted or reduced, preventing brain tissue from getting oxygen and nutrients, thus causing brain cells to die. Stroke is the 5th leading cause of death in the United States and is one of the major causes of disability.

Stroke occurs when the blood supply to part of the brain is interrupted or reduced, preventing brain tissue from getting oxygen and nutrients, thus causing brain cells to die. Stroke is the 5th leading cause of death in the United States and is one of the major causes of disability. Conventional therapy is a form of stroke rehabilitation generally consisting of physical and occupational therapy. It focuses on customized exercises based on the patient’s feedback. Physical therapy includes exercises such as weight bearing (affected arm), vibration of affected muscle and gravity-eliminated movement of affected arm. Overall physical therapy aims at strengthening muscle groups and aides in the relearning process. Occupational aspect of conventional therapy includes activities of daily living (ADL) such as dressing, self-feeding, grooming and toileting. Overall occupational therapy focuses on improving the daily activities performed by individuals. In comparison to conventional therapy, robotic therapy is relatively newer therapy. It uses robotic devices to perform repetitive motions and delivers high dosage and high intensity training to stroke patients. Based on the research studies reviewed, it is known that neuroplasticity in stroke patients is linked to interventions which are high in dosage, intensity, repetition, difficulty, salience. Peer-reviewed literature suggests robotic therapy might be a viable option for recovery in stroke patients. However, the extent to which robotic therapy may provide greater benefits than conventional therapy remains unclear. This thesis addresses the key components of a study design for comparing the efficacy of robotic therapy relative to conventional therapy to improve upper limb sensorimotor function in stroke survivors. The study design is based on an extensive review of the literature of stroke clinical trials and robotic therapy studies, analyses of the capabilities of a robotic therapy device (M2, Fourier Intelligence), and pilot data collected on healthy controls to create a pipeline of tasks and analyses to extract biomarkers of sensorimotor functional changes. This work has laid the foundation for a pilot longitudinal study that will be conducted at the Barrow Neurological Institute, Phoenix, AZ, where conventional and robotic therapy will be compared in a small cohort of stroke survivors.
ContributorsThomas, Lovein (Author) / Santello, Marco (Thesis advisor) / Kleim, Jeffrey (Committee member) / Maruyama, Trent (Committee member) / Arizona State University (Publisher)
Created2021
190941-Thumbnail Image.png
Description
ABSTRACTThis study focuses on the patient-therapist relationship in the physical therapy and rehabilitative field. It also studies the concept of stigma that users of assistive and rehabilitative devices face intrinsically and extrinsically. Stigma users of these devices face while going through therapy often leads to device abandonment and regression in rehabilitation. The purpose of

ABSTRACTThis study focuses on the patient-therapist relationship in the physical therapy and rehabilitative field. It also studies the concept of stigma that users of assistive and rehabilitative devices face intrinsically and extrinsically. Stigma users of these devices face while going through therapy often leads to device abandonment and regression in rehabilitation. The purpose of this study is to identify the most common types of stigma experienced by these users, to evaluate how patients and therapist interact, and what possible gaps in communication they may have, ultimately to explore the potential benefits of incorporating industrial design practices into the physical therapy and rehabilitative field, in an attempt to alleviate the identify pain points in regards to the aforementioned. A mixed-method qualitative/quantitative approach was taken through the use of survey, interviews, and observational study. Weekly, 2-3 hour site visits to SWAN Rehab in Phoenix, AZ were made to conduct said interviews and observation, while digital surveys were dispersed through multiple online channels. Key findings include that common stigmas experienced by device users are being labeled as “other” or being seen as “less than” by others, and that assistive and rehabilitative devices leave much to be desired. Lastly, the implementation of an industrial designer into the patient-therapist relationship is a route that needs to be explored further. Agile design is a facet of industrial design that may prove useful in this field, but require future research to substantiate. This future research may include applied projects involving a patient, therapist, and designer, where assistive and rehabilitative devices are customized specifically for the patient in question. An ethnographic study is also necessary to gain a deeper understanding of what physical therapy truly entails. Keywords: Stigma, Patient-Therapist Relationship, Industrial Design
ContributorsJanes, Solomon (Author) / Takamura, John (Thesis advisor) / Shin, Dosun (Committee member) / Hoffner, Kristin (Committee member) / Arizona State University (Publisher)
Created2023
187604-Thumbnail Image.png
Description
Parkinson's Disease (PD) is a progressive neurodegenerative disorder that affects movement and balance control. Falls are a common and often debilitating consequence of PD, and reactive balance control is critical in preventing falls. This dissertation aimed to determine the adaptability and neural control of reactive balance responses in people with

Parkinson's Disease (PD) is a progressive neurodegenerative disorder that affects movement and balance control. Falls are a common and often debilitating consequence of PD, and reactive balance control is critical in preventing falls. This dissertation aimed to determine the adaptability and neural control of reactive balance responses in people with PD. Aim 1 investigated whether people with PD at risk for falls can improve their reactive balance responses through a 2-week, 6-session training protocol. The study found that reactive step training resulted in immediate and retained improvements in stepping, as measured by the anterior-posterior margin of stability (MOS), step length, and step latency during backward stepping. The second aim explored the neural mechanisms behind eliciting and learning reactive balance responses in PD. The study investigated the white matter (WM) correlates of reactive stepping and responsiveness to step training in PD. White matter was not significantly correlated with any baseline stepping outcomes. However, greater retention of step length was associated with increased fractional anisotropy (FA) within the left anterior corona radiata, left posterior thalamic radiation, and right and left superior longitudinal fasciculi. Lower radial diffusivity (RD) within the left posterior and anterior corona radiata were associated with retention of step latency improvements. These findings highlight the importance of WM microstructural integrity in motor learning and retention processes in PD. The third aim examined the role of the somatosensory system in reactive balance control in people with PD. The tactile and proprioceptive systems were perturbed using vibrotactile stimulation during backward feet-in-place balance responses. The results showed that tactile and proprioceptive stimulation had minimal impact on reactive balance responses. Small effects were observed for delayed tibialis anterior (TA) onsets with proprioceptive stimulation at a medium intensity. Overall, this dissertation provides insights into improving reactive balance responses and the underlying neural mechanisms in PD, which can potentially inform the development of targeted interventions to reduce falls in people with PD.
ContributorsMonaghan, Andrew S (Author) / Peterson, Daniel S (Thesis advisor) / Ofori, Edward (Committee member) / Daliri, Ayoub (Committee member) / Buman, Matthew P (Committee member) / Fling, Brett W (Committee member) / Arizona State University (Publisher)
Created2023