Matching Items (4)
Filtering by

Clear all filters

136317-Thumbnail Image.png
Description
Transient Receptor Potential (TRP) channels are a diverse class of ion channels notable as polymodal sensors. TRPM8 is a TRP channel implicated in cold sensation, nociception, and a variety of human diseases, including obesity and cancer. Despite sustained interest in TRPM8 since its discovery in 2001, many of the molecular

Transient Receptor Potential (TRP) channels are a diverse class of ion channels notable as polymodal sensors. TRPM8 is a TRP channel implicated in cold sensation, nociception, and a variety of human diseases, including obesity and cancer. Despite sustained interest in TRPM8 since its discovery in 2001, many of the molecular mechanisms that underlie function are not yet clear. Knowledge of these properties could have implications for medicine and physiological understanding of sensation and signaling. Structures of TRP channels have proven challenging to solve, but recent Cryoelectron microscopy (Cryo-EM) structures of TRPV1 provide a basis for homology-based modeling of TRP channel structures and interactions. I present an ensemble of 11,000 Rosetta computational homology models of TRPM8 based on the recent Cryo-EM apo structure of TRPV1 (PDB code:3J5P). Site-directed mutagenesis has provided clues about which residues are most essential for modulatory ligands to bind, so the models presented provide a platform to investigate the structural basis of TRPM8 ligand modulation complementary to existing functional and structural information. Menthol and icilin appear to interact with interfacial residues in the sensor domain (S1-S4). One consensus feature of these sites is the presence of local contacts to the S4 helix, suggesting this helix may be mechanistically involved with the opening of the pore. Phosphatidylinositol 4,5-bisphosphate (PIP2)has long been known to interact with the C-terminus of TRPM8, and some of the homology models contain plausible binding pockets where PIP2 can come into contact with charged residues known to be essential for PIP2 modulation. Future in silico binding experiments could provide testable hypothesis for in vitro structural studies, and experimental data (e.g. distance constraints from electron paramagnetic resonance spectroscopy [EPR]) could further refine the models.
ContributorsHelsell, Cole Vincent Maher (Author) / Van Horn, Wade (Thesis director) / Wang, Xu (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
Description
The understanding of normal human physiology and disease pathogenesis shows great promise for progress with increasing ability to profile genomic loci and transcripts in single cells in situ. Using biorthogonal cleavable fluorescent oligonucleotides, a highly multiplexed single-cell in situ RNA and DNA analysis is reported. In this report, azide-based cleavable

The understanding of normal human physiology and disease pathogenesis shows great promise for progress with increasing ability to profile genomic loci and transcripts in single cells in situ. Using biorthogonal cleavable fluorescent oligonucleotides, a highly multiplexed single-cell in situ RNA and DNA analysis is reported. In this report, azide-based cleavable linker connects oligonucleotides to fluorophores to show nucleic acids through in situ hybridization. Post-imaging, the fluorophores are effectively cleaved off in half an hour without loss of RNA or DNA integrity. Through multiple cycles of hybridization, imaging, and cleavage this approach proves to quantify thousands of different RNA species or genomic loci because of single-molecule sensitivity in single cells in situ. Different nucleic acids can be imaged by shown by multi-color staining in each hybridization cycle, and that multiple hybridization cycles can be run on the same specimen. It is shown that in situ analysis of DNA, RNA and protein can be accomplished using both cleavable fluorescent antibodies and oligonucleotides. The highly multiplexed imaging platforms will have the potential for wide applications in both systems biology and biomedical research. Thus, proving to be cost effective and time effective.
ContributorsSamuel, Adam David (Author) / Guo, Jia (Thesis director) / Liu, Wei (Committee member) / Wang, Xu (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
168314-Thumbnail Image.png
Description
Cryogenic Electron Microscopy (Cryo-EM) is a method that can be used for studying the structure of biological systems. Biological samples are frozen to cryogenic temperatures and embedded in a vitreous ice when they are imaged by electrons. Due to its ability to preserve biological specimens in near-native conditions, cryo-EM has

Cryogenic Electron Microscopy (Cryo-EM) is a method that can be used for studying the structure of biological systems. Biological samples are frozen to cryogenic temperatures and embedded in a vitreous ice when they are imaged by electrons. Due to its ability to preserve biological specimens in near-native conditions, cryo-EM has a significant contribution to the field of structural biology.Single-particle cryo-EM technique was utilized to investigate the dynamical characteristics of various protein complexes such as the Nogo receptor complex, polymerase ζ (Polζ) in yeast and human integrin ⍺vβ8-pro-TGFβ1-GARP complex. Furthermore, I proposed a new method that can potentially improve the sample preparation for cryo-EM. The Nogo receptor complex was expressed using baculovirus expression system in sf9 insect cells and isolated for structural studies. Nogo receptor complex was found to have various stoichiometries and interactions between individual proteins. A structural investigation of the yeast apo polymerase ζ holoenzyme was also carried out. The apo Polζ displays a concerted motions associated with expansion of the Polζ DNA-binding channel upon DNA binding. Furthermore, a lysine residue that obstructs the DNA-binding channel in apo Polζ was found and suggested a gating mechanism. In addition, cryo-EM studies of the human integrin ⍺vβ8-pro-TGFβ1-GARP complex was conducted to assess its dynamic interactions. The 2D classifications showed the ⍺vβ8-pro-TGFβ1-GARP complex is highly flexible and required several sample preparation techniques such as crosslinking and graphene oxide coating to improve protein homogeneity on the EM grid. To overcome challenges within the cryo-EM technique such as particle adsorption on air-water interface, I have documented a collaborative work on the development and application of lipid monolayer sandwich on cryo-EM grid. Cryogenic electron tomography (cryo-ET) along with cryo-EM were used to study the characteristics of lipid monolayer sandwich as a potential protective layer for EM grid. The cryo-ET results demonstrated that the thickness of lipid monolayer is adequate for single-particle cryo-EM processing. Furthermore, there was no appearance of preferred orientations in cryo-EM and cryo-ET images. To establish that this method is actually beneficial, more data must be collected, and high-resolution structures of protein samples must be obtained using this methodology.
ContributorsTruong, Chloe Du (Author) / Chiu, Po-Lin (Thesis advisor) / Liu, Wei (Committee member) / Mazor, Yuval (Committee member) / Arizona State University (Publisher)
Created2021
158015-Thumbnail Image.png
Description
Integrins are a family of αβ heterodimeric transmembrane receptors. As an important class of adhesion receptors, integrins mediate cell adhesion, migration, and transformation through bidirectional signaling across the plasma membrane. Among the 24 different types of integrins, which are notorious for their capacity to recognize multiple ligands, the leukocyte integrin

Integrins are a family of αβ heterodimeric transmembrane receptors. As an important class of adhesion receptors, integrins mediate cell adhesion, migration, and transformation through bidirectional signaling across the plasma membrane. Among the 24 different types of integrins, which are notorious for their capacity to recognize multiple ligands, the leukocyte integrin αMβ2 (Mac-1) is the most promiscuous member. In contrast to other integrins, Mac1 is unique with respect to its preference for cationic ligands. In this thesis, a new Mac-1 cationic ligand named pleiotrophin (PTN) is uncovered. PTN is an important cytokine and growth factor. Its activities in mitogenesis and angiogenesis have been extensively researched, but its function on immune cells was not widely explored. In this research, the cell biology and biochemical evidences show that PTN can regulate various Mac-1-expressing cells functions through the activation of the extracellular signal regulated kinases. Direct interactions between PTN and the αM I-domain, the major ligand-binding domain of Mac-1, has been shown using biolayer interferometry analyses and confirmed by solution NMR spectroscopy. The binding epitopes and the binding mechanism of PTN and αM I-domain interaction were further revealed by peptide array analysis and microscale thermophoresis. The data suggested that PTN’s thrombospondin type-1 repeat (TSR) domains and αM I-domain metal-ion-dependent adhesion site (MIDAS) are the major binding sites. In addition, this interaction followed a novel metal-ion independent binding mechanism which has not been found in other integrins. After a series of characterizations of αM I-domain using both experimental and computational methods, it showed that activated αM I-domain is significantly more dynamic than inactive αM I-domain, and the dynamics seem to modulate the effect of Mg2+ on its interactions with cationic ligands. To further explore the PTN induced Mac-1 structure rearrangement, intact Mac-1 was studied by negative stain electron microscopy. The results showed that the Mac-1 exhibited a very heterogeneous conformation distribution in detergents. In contrast, the Mac-1 adopted predominantly the bent conformation in phospholipid nanodisc condition. This Mac-1 nanodisc model provides a new platform for studying intact Mac-1 activation mechanism in a more physiologically relevant manner in the future.
ContributorsShen, Di (Author) / Wang, Xu (Thesis advisor) / Van Horn, Wade (Committee member) / Yarger, Jeffery (Committee member) / Arizona State University (Publisher)
Created2020