Matching Items (3)
Filtering by

Clear all filters

Description
This creative thesis project aimed to create career development resources that School of Life Sciences majors could use to enhance their college experience, expand the breadth of relevant career options for School of Life Sciences majors, and confront and divert career problems through the implementation of these career development resources.

This creative thesis project aimed to create career development resources that School of Life Sciences majors could use to enhance their college experience, expand the breadth of relevant career options for School of Life Sciences majors, and confront and divert career problems through the implementation of these career development resources. Students encounter career problems when their intention and action diverge. These career problems may cause a student to stop their pursuit of a given career, change majors, or even stop schooling completely. It is the objective of this project to help resolve these career problems by introducing a career development resource flyer that educates the student about a given career, provides coursework to guide a student towards this career path, familiarize students with extracurricular efforts necessary for this position, propose valuable resources that the student can utilize to learn more about the career, and offer a question and answer portion for further career and professional understanding. In order to create these career development resource flyers a variety of professionals, both with and without relationships with Arizona State University were contacted and interviewed. The answers gathered from these interviews were then utilized to create the career flyers. The project was successful in creating five distinct career development resource flyers, as well as a blank template with instructions to be used in the future by the School of Life Sciences. The career development resource flyers will be utilized by the School of Life Sciences advising staff for future exploratory majors, but is not limited to just these students. Aspirations are set to create an expansive reservoir of these resources for future generations of students to access in hopes that they will be better suited to find a career path that they are passionate about and be better prepared to attain.
ContributorsGallegos, Darius Sloan (Author) / Wilson Sayres, Melissa (Thesis director) / Downing, Virginia (Committee member) / DeNardo, Dale (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
This project was designed to develop resources to highlight diverse career options for students achieving a degree within the School of Life Sciences. Many students have a very narrow view of what careers their degree prepares them for. In addition, if they have a career in mind, they have difficulty

This project was designed to develop resources to highlight diverse career options for students achieving a degree within the School of Life Sciences. Many students have a very narrow view of what careers their degree prepares them for. In addition, if they have a career in mind, they have difficulty selecting an appropriate degree that will prepare them for their intended career. The goal of this project was to provide a broader view of career options, as well as illustrate the requirements each student would need to meet in order to pursue these careers. This was done by interviewing five career professionals and developing a major map that corresponds to the specific requirements of that career.
ContributorsBaber, Ariel Kate Elven (Author) / Wilson Sayres, Melissa (Thesis director) / DeNardo, Dale (Committee member) / Downing, Virginia (Committee member) / School of Life Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
155019-Thumbnail Image.png
Description
In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes

In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes achieve equal gene expression which prevents deleterious side effects from having too much or too little expression of genes on sex chromsomes. The green anole is part of a group of species that recently underwent an adaptive radiation. The green anole has XX/XY sex determination, but the content of the X chromosome and its evolution have not been described. Given its status as a model species, better understanding the green anole genome could reveal insights into other species. Genomic analyses are crucial for a comprehensive picture of sex chromosome differentiation and dosage compensation, in addition to understanding speciation.

In order to address this, multiple comparative genomics and bioinformatics analyses were conducted to elucidate patterns of evolution in the green anole and across multiple anole species. Comparative genomics analyses were used to infer additional X-linked loci in the green anole, RNAseq data from male and female samples were anayzed to quantify patterns of sex-biased gene expression across the genome, and the extent of dosage compensation on the anole X chromosome was characterized, providing evidence that the sex chromosomes in the green anole are dosage compensated.

In addition, X-linked genes have a lower ratio of nonsynonymous to synonymous substitution rates than the autosomes when compared to other Anolis species, and pairwise rates of evolution in genes across the anole genome were analyzed. To conduct this analysis a new pipeline was created for filtering alignments and performing batch calculations for whole genome coding sequences. This pipeline has been made publicly available.
ContributorsRupp, Shawn Michael (Author) / Wilson Sayres, Melissa A (Thesis advisor) / Kusumi, Kenro (Committee member) / DeNardo, Dale (Committee member) / Arizona State University (Publisher)
Created2016