Matching Items (839)
Filtering by

Clear all filters

152204-Thumbnail Image.png
Description
This project sheds light on trombonist Andy Martin's improvisation and provides tools for further learning. A biographical sketch gives background on Martin, establishing him as a newer jazz master. Through the transcription and analysis of nine improvised solos, Martin's improvisational voice and vocabulary is deciphered and presented as a series

This project sheds light on trombonist Andy Martin's improvisation and provides tools for further learning. A biographical sketch gives background on Martin, establishing him as a newer jazz master. Through the transcription and analysis of nine improvised solos, Martin's improvisational voice and vocabulary is deciphered and presented as a series of seven thematic hooks. These patterns, rhythms, and gestures are described, analyzed, and presented as examples of how each is used in the solos. The hooks are also set as application exercises for learning jazz style and improvisation. These exercises demonstrate how to use Martin's hooks as a means for furthering one's own improvisation. A full method for successful transcription is also presented, along with the printed transcriptions and their accompanying information sheets.
ContributorsWilkinson, Michael Scott (Author) / Ericson, John (Thesis advisor) / Kocour, Michael (Committee member) / Solis, Theodore (Committee member) / Arizona State University (Publisher)
Created2013
151656-Thumbnail Image.png
Description
Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all

Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all of the known samples. The selection of the contributing data points and the specifics of how they are used to define the interpolated values influences how effectively the interpolation algorithm is able to estimate the underlying, continuous signal. The main contributions of this dissertation are three fold: 1) Reframing edge-directed interpolation of a single image as an intensity-based registration problem. 2) Providing an analytical framework for intensity-based registration using control grid constraints. 3) Quantitative assessment of the new, single-image enlargement algorithm based on analytical intensity-based registration. In addition to single image resizing, the new methods and analytical approaches were extended to address a wide range of applications including volumetric (multi-slice) image interpolation, video deinterlacing, motion detection, and atmospheric distortion correction. Overall, the new approaches generate results that more accurately reflect the underlying signals than less computationally demanding approaches and with lower processing requirements and fewer restrictions than methods with comparable accuracy.
ContributorsZwart, Christine M. (Author) / Frakes, David H (Thesis advisor) / Karam, Lina (Committee member) / Kodibagkar, Vikram (Committee member) / Spanias, Andreas (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2013
151665-Thumbnail Image.png
Description
Jazz continues, into its second century, as one of the most important musics taught in public middle and high schools. Even so, research related to how students learn, especially in their earliest interactions with jazz culture, is limited. Weaving together interviews and observations of junior and senior high school jazz

Jazz continues, into its second century, as one of the most important musics taught in public middle and high schools. Even so, research related to how students learn, especially in their earliest interactions with jazz culture, is limited. Weaving together interviews and observations of junior and senior high school jazz players and teachers, private studio instructors, current university students majoring in jazz, and university and college jazz faculty, I developed a composite sketch of a secondary school student learning to play jazz. Using arts-based educational research methods, including the use of narrative inquiry and literary non-fiction, the status of current jazz education and the experiences by novice jazz learners is explored. What emerges is a complex story of students and teachers negotiating the landscape of jazz in and out of early twenty-first century public schools. Suggestions for enhancing jazz experiences for all stakeholders follow, focusing on access and the preparation of future jazz teachers.
ContributorsKelly, Keith B (Author) / Stauffer, Sandra (Thesis advisor) / Tobias, Evan (Committee member) / Kocour, Michael (Committee member) / Sullivan, Jill (Committee member) / Schmidt, Margaret (Committee member) / Arizona State University (Publisher)
Created2013
152290-Thumbnail Image.png
Description
Concerto for Piano and Chamber Orchestra was conceived in February of 2013, and conceptually it is my attempt to fuse personal expressions of jazz and classical music into one fully realized statement. It is a three movement work (fast, slow, fast) for 2 fl., 2 ob., 2 cl., bsn., 2

Concerto for Piano and Chamber Orchestra was conceived in February of 2013, and conceptually it is my attempt to fuse personal expressions of jazz and classical music into one fully realized statement. It is a three movement work (fast, slow, fast) for 2 fl., 2 ob., 2 cl., bsn., 2 hrn., 2 tpt., tbn., pno., perc., str. (6,4,2,2,1). The work is approximately 27 minutes in duration. The first movement of the Concerto is written in a fluid sonata form. A fugato begins where the second theme would normally appear, and the second theme does not fully appear until near the end of the solo piano section. The result is that the second theme when finally revealed is so reminiscent of the history of jazz and classical synthesis that it does not sound completely new, and in fact is a return of something that was heard before, but only hinted at in this piece. The second movement is a kind of deconstructive set of variations, with a specific theme and harmonic pattern implied throughout the movement. However, the full theme is not disclosed until the final variation. The variations are interrupted by moments of pure rhythmic music, containing harmony made up of major chords with an added fourth, defying resolution, and dissolving each time back into a new variation. The third movement is in rondo form, using rhythmic and harmonic influences from jazz. The percussion plays a substantial role in this movement, acting as a counterpoint to the piano part throughout. This movement and the piece concludes with an extended coda, inspired indirectly by the simple complexities of an improvisational piano solo, building in complexity as the concerto draws to a close.
ContributorsSneider, Elliot (Author) / Rogers, Rodney (Thesis advisor) / DeMars, James (Committee member) / Hackbarth, Glenn (Committee member) / Solis, Theodore (Committee member) / Arizona State University (Publisher)
Created2013
153305-Thumbnail Image.png
Description
This research study investigated the effects of high fidelity graphics on both learning and presence, or the "sense of being there," inside a Virtual Learning Environment (VLE). Four versions of a VLE on the subject of the element mercury were created, each with a different combination of high and

This research study investigated the effects of high fidelity graphics on both learning and presence, or the "sense of being there," inside a Virtual Learning Environment (VLE). Four versions of a VLE on the subject of the element mercury were created, each with a different combination of high and low fidelity polygon models and high and low fidelity shaders. A total of 76 college age (18+ years of age) participants were randomly assigned to one of the four conditions. The participants interacted with the VLE and then completed several posttest measures on learning, presence, and attitudes towards the VLE experience. Demographic information was also collected, including age, computer gameplay experience, number of virtual environments interacted with, gender and time spent in this virtual environment. The data was analyzed as a 2 x 2 between subjects ANOVA.

The main effects of shader fidelity and polygon fidelity were both non- significant for both learning and all presence subscales inside the VLE. In addition, there was no significant interaction between shader fidelity and model fidelity. However, there were two significant results on the supplementary variables. First, gender was found to have a significant main effect on all the presence subscales. Females reported higher average levels of presence than their male counterparts. Second, gameplay hours, or the number of hours a participant played computer games per week, also had a significant main effect on participant score on the learning measure. The participants who reported playing 15+ hours of computer games per week, the highest amount of time in the variable, had the highest score as a group on the mercury learning measure while those participants that played 1-5 hours per week had the lowest scores.
ContributorsHorton, Scott (Author) / Nelson, Brian (Thesis advisor) / Savenye, Wilhelmina (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2014
153284-Thumbnail Image.png
Description
This multiple-case study addresses the nature of the out-of-school musical engagements of four undergraduate students who were enrolled as jazz studies majors in a large school of music in the U.S. southwest. It concerns what they did musically when they were outside of school, why they did what they did,

This multiple-case study addresses the nature of the out-of-school musical engagements of four undergraduate students who were enrolled as jazz studies majors in a large school of music in the U.S. southwest. It concerns what they did musically when they were outside of school, why they did what they did, what experiences they said they learned from, and how their out-of-school engagements related to their in-school curriculum. Research on jazz education, informal learning practices in music, and the in-school and out-of-school experiences of students informed this study. Data were generated through observation, interviews, video blogs (vlogs), and SMS text messages.

Analysis of data revealed that participants engaged with music when outside of school by practicing, teaching, gigging, recording, playing music with others, attending live musical performances, socializing with other musicians, listening, and engaging with non-jazz musical styles (aside from listening). They engaged with music because of: 1) the love of music, 2) the desire for musical excellence, 3) financial considerations, 4) the aspiration to affect others positively with music, and 5) the connection with other musicians. Participants indicated that they learned by practicing, listening to recordings, attending live performances, playing paid engagements, socializing, teaching, and reading. In-school and out-of-school experience and learning had substantial but not complete overlap.

The study implies that a balance between in-school and out-of-school musical experience may help undergraduate jazz studies students to maximize their overall musical learning. It also suggests that at least some jazz studies majors are fluent in a wide variety of music learning practices that make them versatile, flexible, and employable musicians. Further implications are provided for undergraduate jazz students as well as collegiate jazz educators, the music education profession, and schools of music. Additional implications concern future research and the characterization of jazz study in academia.
ContributorsLibman, Jeffrey B (Author) / Tobias, Evan (Thesis advisor) / Kocour, Michael (Committee member) / Schmidt, Margaret (Committee member) / Solis, Theodore (Committee member) / Stauffer, Sandra (Committee member) / Arizona State University (Publisher)
Created2014
Description
The study of artist transcriptions is an effective vehicle for assimilating the language and style of jazz. Pairing transcriptions with historical context provides further insight into the back story of the artists' life and method. Innovators are often the subject of published studies of this kind, but transcriptions of plunger-mute

The study of artist transcriptions is an effective vehicle for assimilating the language and style of jazz. Pairing transcriptions with historical context provides further insight into the back story of the artists' life and method. Innovators are often the subject of published studies of this kind, but transcriptions of plunger-mute master Al Grey have been overlooked. This document fills that void, combining historical context with thirteen transcriptions of Grey's trombone features and improvisations. Selection of transcribed materials was based on an examination of historically significant solos in Al Grey's fifty-five-year career. The results are a series of open-horn and plunger solos that showcase Grey's sound, technical brilliance, and wide range of dynamics and articulation. This collection includes performances from a mix of widely available and obscure recordings, the majority coming from engagements with the Count Basie Orchestra. Methods learned from the study of Al Grey's book Plunger Techniques were vital in the realization of his work. The digital transcription software Amazing Slow Downer by Roni Music aided in deciphering some of Grey's more complicated passages and, with octave displacement, helped bring previously inaudible moments to the foreground.
ContributorsHopkins, Charles E (Author) / Pilafian, Sam (Thesis advisor) / Stauffer, Sandra (Committee member) / Solís, Ted (Committee member) / Ericson, John (Committee member) / Kocour, Michael (Committee member) / Arizona State University (Publisher)
Created2011
149991-Thumbnail Image.png
Description
With the introduction of compressed sensing and sparse representation,many image processing and computer vision problems have been looked at in a new way. Recent trends indicate that many challenging computer vision and image processing problems are being solved using compressive sensing and sparse representation algorithms. This thesis assays some applications

With the introduction of compressed sensing and sparse representation,many image processing and computer vision problems have been looked at in a new way. Recent trends indicate that many challenging computer vision and image processing problems are being solved using compressive sensing and sparse representation algorithms. This thesis assays some applications of compressive sensing and sparse representation with regards to image enhancement, restoration and classication. The first application deals with image Super-Resolution through compressive sensing based sparse representation. A novel framework is developed for understanding and analyzing some of the implications of compressive sensing in reconstruction and recovery of an image through raw-sampled and trained dictionaries. Properties of the projection operator and the dictionary are examined and the corresponding results presented. In the second application a novel technique for representing image classes uniquely in a high-dimensional space for image classification is presented. In this method, design and implementation strategy of the image classification system through unique affine sparse codes is presented, which leads to state of the art results. This further leads to analysis of some of the properties attributed to these unique sparse codes. In addition to obtaining these codes, a strong classier is designed and implemented to boost the results obtained. Evaluation with publicly available datasets shows that the proposed method outperforms other state of the art results in image classication. The final part of the thesis deals with image denoising with a novel approach towards obtaining high quality denoised image patches using only a single image. A new technique is proposed to obtain highly correlated image patches through sparse representation, which are then subjected to matrix completion to obtain high quality image patches. Experiments suggest that there may exist a structure within a noisy image which can be exploited for denoising through a low-rank constraint.
ContributorsKulkarni, Naveen (Author) / Li, Baoxin (Thesis advisor) / Ye, Jieping (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
150440-Thumbnail Image.png
Description
Super-Resolution (SR) techniques are widely developed to increase image resolution by fusing several Low-Resolution (LR) images of the same scene to overcome sensor hardware limitations and reduce media impairments in a cost-effective manner. When choosing a solution for the SR problem, there is always a trade-off between computational efficiency and

Super-Resolution (SR) techniques are widely developed to increase image resolution by fusing several Low-Resolution (LR) images of the same scene to overcome sensor hardware limitations and reduce media impairments in a cost-effective manner. When choosing a solution for the SR problem, there is always a trade-off between computational efficiency and High-Resolution (HR) image quality. Existing SR approaches suffer from extremely high computational requirements due to the high number of unknowns to be estimated in the solution of the SR inverse problem. This thesis proposes efficient iterative SR techniques based on Visual Attention (VA) and perceptual modeling of the human visual system. In the first part of this thesis, an efficient ATtentive-SELective Perceptual-based (AT-SELP) SR framework is presented, where only a subset of perceptually significant active pixels is selected for processing by the SR algorithm based on a local contrast sensitivity threshold model and a proposed low complexity saliency detector. The proposed saliency detector utilizes a probability of detection rule inspired by concepts of luminance masking and visual attention. The second part of this thesis further enhances on the efficiency of selective SR approaches by presenting an ATtentive (AT) SR framework that is completely driven by VA region detectors. Additionally, different VA techniques that combine several low-level features, such as center-surround differences in intensity and orientation, patch luminance and contrast, bandpass outputs of patch luminance and contrast, and difference of Gaussians of luminance intensity are integrated and analyzed to illustrate the effectiveness of the proposed selective SR frameworks. The proposed AT-SELP SR and AT-SR frameworks proved to be flexible by integrating a Maximum A Posteriori (MAP)-based SR algorithm as well as a fast two-stage Fusion-Restoration (FR) SR estimator. By adopting the proposed selective SR frameworks, simulation results show significant reduction on average in computational complexity with comparable visual quality in terms of quantitative metrics such as PSNR, SNR or MAE gains, and subjective assessment. The third part of this thesis proposes a Perceptually Weighted (WP) SR technique that incorporates unequal weighting parameters in the cost function of iterative SR problems. The proposed approach is inspired by the unequal processing of the Human Visual System (HVS) to different local image features in an image. Simulation results show an enhanced reconstruction quality and faster convergence rates when applied to the MAP-based and FR-based SR schemes.
ContributorsSadaka, Nabil (Author) / Karam, Lina J (Thesis advisor) / Spanias, Andreas S (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Abousleman, Glen P (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2011
150262-Thumbnail Image.png
Description
This study examines the experiences of participants enrolled in an online community college jazz history course. I surveyed the participants before the course began and observed them in the online space through the duration of the course. Six students also participated in interviews during and after the course. Coded data

This study examines the experiences of participants enrolled in an online community college jazz history course. I surveyed the participants before the course began and observed them in the online space through the duration of the course. Six students also participated in interviews during and after the course. Coded data from the interviews, surveys, and recorded discussion posts and journal entries provided evidence about the nature of interaction and engagement in learning in an online environment. I looked for evidence either supporting or detracting from a democratic online learning environment, concentrating on the categories of student engagement, freedom of expression, and accessibility. The data suggested that the participants' behaviors in and abilities to navigate the online class were influenced by their pre-existing native media habits. Participants' reasons for enrolling in the online course, which included convenience and schedule flexibility, informed their actions and behaviors in the class. Analysis revealed that perceived positive student engagement did not contribute to a democratic learning environment but rather to an easy, convenient experience in the online class. Finally, the data indicated that participants' behaviors in their future lives would not be affected by the online class in that their learning experiences were not potent enough to alter or inform their behavior in society. As online classes gain popularity, the ability of these classes to provide meaningful learning experiences must be questioned. Students in this online jazz history class presented, at times, a façade of participation and community building but demonstrated a lack of sincerity and interest in the course. The learning environment supported accessibility and freedom of expression to an extent, but students' engagement with their peers was limited. Overall, this study found a need for more research into the quality of online classes as learning platforms that support democracy, student-to-student interaction, and community building.
ContributorsHunter, Robert W. (Author) / Stauffer, Sandra L (Thesis advisor) / Tobias, Evan (Thesis advisor) / Bush, Jeffrey (Committee member) / Kocour, Michael (Committee member) / Pilafian, Sam (Committee member) / Arizona State University (Publisher)
Created2011