Matching Items (840)
Filtering by

Clear all filters

152204-Thumbnail Image.png
Description
This project sheds light on trombonist Andy Martin's improvisation and provides tools for further learning. A biographical sketch gives background on Martin, establishing him as a newer jazz master. Through the transcription and analysis of nine improvised solos, Martin's improvisational voice and vocabulary is deciphered and presented as a series

This project sheds light on trombonist Andy Martin's improvisation and provides tools for further learning. A biographical sketch gives background on Martin, establishing him as a newer jazz master. Through the transcription and analysis of nine improvised solos, Martin's improvisational voice and vocabulary is deciphered and presented as a series of seven thematic hooks. These patterns, rhythms, and gestures are described, analyzed, and presented as examples of how each is used in the solos. The hooks are also set as application exercises for learning jazz style and improvisation. These exercises demonstrate how to use Martin's hooks as a means for furthering one's own improvisation. A full method for successful transcription is also presented, along with the printed transcriptions and their accompanying information sheets.
ContributorsWilkinson, Michael Scott (Author) / Ericson, John (Thesis advisor) / Kocour, Michael (Committee member) / Solis, Theodore (Committee member) / Arizona State University (Publisher)
Created2013
151665-Thumbnail Image.png
Description
Jazz continues, into its second century, as one of the most important musics taught in public middle and high schools. Even so, research related to how students learn, especially in their earliest interactions with jazz culture, is limited. Weaving together interviews and observations of junior and senior high school jazz

Jazz continues, into its second century, as one of the most important musics taught in public middle and high schools. Even so, research related to how students learn, especially in their earliest interactions with jazz culture, is limited. Weaving together interviews and observations of junior and senior high school jazz players and teachers, private studio instructors, current university students majoring in jazz, and university and college jazz faculty, I developed a composite sketch of a secondary school student learning to play jazz. Using arts-based educational research methods, including the use of narrative inquiry and literary non-fiction, the status of current jazz education and the experiences by novice jazz learners is explored. What emerges is a complex story of students and teachers negotiating the landscape of jazz in and out of early twenty-first century public schools. Suggestions for enhancing jazz experiences for all stakeholders follow, focusing on access and the preparation of future jazz teachers.
ContributorsKelly, Keith B (Author) / Stauffer, Sandra (Thesis advisor) / Tobias, Evan (Committee member) / Kocour, Michael (Committee member) / Sullivan, Jill (Committee member) / Schmidt, Margaret (Committee member) / Arizona State University (Publisher)
Created2013
152536-Thumbnail Image.png
Description
As robotic systems are used in increasingly diverse applications, the interaction of humans and robots has become an important area of research. In many of the applications of physical human robot interaction (pHRI), the robot and the human can be seen as cooperating to complete a task with some object

As robotic systems are used in increasingly diverse applications, the interaction of humans and robots has become an important area of research. In many of the applications of physical human robot interaction (pHRI), the robot and the human can be seen as cooperating to complete a task with some object of interest. Often these applications are in unstructured environments where many paths can accomplish the goal. This creates a need for the ability to communicate a preferred direction of motion between both participants in order to move in coordinated way. This communication method should be bidirectional to be able to fully utilize both the robot and human capabilities. Moreover, often in cooperative tasks between two humans, one human will operate as the leader of the task and the other as the follower. These roles may switch during the task as needed. The need for communication extends into this area of leader-follower switching. Furthermore, not only is there a need to communicate the desire to switch roles but also to control this switching process. Impedance control has been used as a way of dealing with some of the complexities of pHRI. For this investigation, it was examined if impedance control can be utilized as a way of communicating a preferred direction between humans and robots. The first set of experiments tested to see if a human could detect a preferred direction of a robot by grasping and moving an object coupled to the robot. The second set tested the reverse case if the robot could detect the preferred direction of the human. The ability to detect the preferred direction was shown to be up to 99% effective. Using these results, a control method to allow a human and robot to switch leader and follower roles during a cooperative task was implemented and tested. This method proved successful 84% of the time. This control method was refined using adaptive control resulting in lower interaction forces and a success rate of 95%.
ContributorsWhitsell, Bryan (Author) / Artemiadis, Panagiotis (Thesis advisor) / Santello, Marco (Committee member) / Santos, Veronica (Committee member) / Arizona State University (Publisher)
Created2014
152290-Thumbnail Image.png
Description
Concerto for Piano and Chamber Orchestra was conceived in February of 2013, and conceptually it is my attempt to fuse personal expressions of jazz and classical music into one fully realized statement. It is a three movement work (fast, slow, fast) for 2 fl., 2 ob., 2 cl., bsn., 2

Concerto for Piano and Chamber Orchestra was conceived in February of 2013, and conceptually it is my attempt to fuse personal expressions of jazz and classical music into one fully realized statement. It is a three movement work (fast, slow, fast) for 2 fl., 2 ob., 2 cl., bsn., 2 hrn., 2 tpt., tbn., pno., perc., str. (6,4,2,2,1). The work is approximately 27 minutes in duration. The first movement of the Concerto is written in a fluid sonata form. A fugato begins where the second theme would normally appear, and the second theme does not fully appear until near the end of the solo piano section. The result is that the second theme when finally revealed is so reminiscent of the history of jazz and classical synthesis that it does not sound completely new, and in fact is a return of something that was heard before, but only hinted at in this piece. The second movement is a kind of deconstructive set of variations, with a specific theme and harmonic pattern implied throughout the movement. However, the full theme is not disclosed until the final variation. The variations are interrupted by moments of pure rhythmic music, containing harmony made up of major chords with an added fourth, defying resolution, and dissolving each time back into a new variation. The third movement is in rondo form, using rhythmic and harmonic influences from jazz. The percussion plays a substantial role in this movement, acting as a counterpoint to the piano part throughout. This movement and the piece concludes with an extended coda, inspired indirectly by the simple complexities of an improvisational piano solo, building in complexity as the concerto draws to a close.
ContributorsSneider, Elliot (Author) / Rogers, Rodney (Thesis advisor) / DeMars, James (Committee member) / Hackbarth, Glenn (Committee member) / Solis, Theodore (Committee member) / Arizona State University (Publisher)
Created2013
152978-Thumbnail Image.png
Description
Nonvolatile memory (NVM) technologies have been an integral part of electronic systems for the past 30 years. The ideal non-volatile memory have minimal physical size, energy usage, and cost while having maximal speed, capacity, retention time, and radiation hardness. A promising candidate for next-generation memory is ion-conducting bridging RAM which

Nonvolatile memory (NVM) technologies have been an integral part of electronic systems for the past 30 years. The ideal non-volatile memory have minimal physical size, energy usage, and cost while having maximal speed, capacity, retention time, and radiation hardness. A promising candidate for next-generation memory is ion-conducting bridging RAM which is referred to as programmable metallization cell (PMC), conductive bridge RAM (CBRAM), or electrochemical metallization memory (ECM), which is likely to surpass flash memory in all the ideal memory characteristics. A comprehensive physics-based model is needed to completely understand PMC operation and assist in design optimization.

To advance the PMC modeling effort, this thesis presents a precise physical model parameterizing materials associated with both ion-rich and ion-poor layers of the PMC's solid electrolyte, so that captures the static electrical behavior of the PMC in both its low-resistance on-state (LRS) and high resistance off-state (HRS). The experimental data is measured from a chalcogenide glass PMC designed and manufactured at ASU. The static on- and off-state resistance of a PMC device composed of a layered (Ag-rich/Ag-poor) Ge30Se70 ChG film is characterized and modeled using three dimensional simulation code written in Silvaco Atlas finite element analysis software. Calibrating the model to experimental data enables the extraction of device parameters such as material bandgaps, workfunctions, density of states, carrier mobilities, dielectric constants, and affinities.

The sensitivity of our modeled PMC to the variation of its prominent achieved material parameters is examined on the HRS and LRS impedance behavior.

The obtained accurate set of material parameters for both Ag-rich and Ag-poor ChG systems and process variation verification on electrical characteristics enables greater fidelity in PMC device simulation, which significantly enhances our ability to understand the underlying physics of ChG-based resistive switching memory.
ContributorsRajabi, Saba (Author) / Barnaby, Hugh (Thesis advisor) / Kozicki, Michael (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2014
153284-Thumbnail Image.png
Description
This multiple-case study addresses the nature of the out-of-school musical engagements of four undergraduate students who were enrolled as jazz studies majors in a large school of music in the U.S. southwest. It concerns what they did musically when they were outside of school, why they did what they did,

This multiple-case study addresses the nature of the out-of-school musical engagements of four undergraduate students who were enrolled as jazz studies majors in a large school of music in the U.S. southwest. It concerns what they did musically when they were outside of school, why they did what they did, what experiences they said they learned from, and how their out-of-school engagements related to their in-school curriculum. Research on jazz education, informal learning practices in music, and the in-school and out-of-school experiences of students informed this study. Data were generated through observation, interviews, video blogs (vlogs), and SMS text messages.

Analysis of data revealed that participants engaged with music when outside of school by practicing, teaching, gigging, recording, playing music with others, attending live musical performances, socializing with other musicians, listening, and engaging with non-jazz musical styles (aside from listening). They engaged with music because of: 1) the love of music, 2) the desire for musical excellence, 3) financial considerations, 4) the aspiration to affect others positively with music, and 5) the connection with other musicians. Participants indicated that they learned by practicing, listening to recordings, attending live performances, playing paid engagements, socializing, teaching, and reading. In-school and out-of-school experience and learning had substantial but not complete overlap.

The study implies that a balance between in-school and out-of-school musical experience may help undergraduate jazz studies students to maximize their overall musical learning. It also suggests that at least some jazz studies majors are fluent in a wide variety of music learning practices that make them versatile, flexible, and employable musicians. Further implications are provided for undergraduate jazz students as well as collegiate jazz educators, the music education profession, and schools of music. Additional implications concern future research and the characterization of jazz study in academia.
ContributorsLibman, Jeffrey B (Author) / Tobias, Evan (Thesis advisor) / Kocour, Michael (Committee member) / Schmidt, Margaret (Committee member) / Solis, Theodore (Committee member) / Stauffer, Sandra (Committee member) / Arizona State University (Publisher)
Created2014
Description
The study of artist transcriptions is an effective vehicle for assimilating the language and style of jazz. Pairing transcriptions with historical context provides further insight into the back story of the artists' life and method. Innovators are often the subject of published studies of this kind, but transcriptions of plunger-mute

The study of artist transcriptions is an effective vehicle for assimilating the language and style of jazz. Pairing transcriptions with historical context provides further insight into the back story of the artists' life and method. Innovators are often the subject of published studies of this kind, but transcriptions of plunger-mute master Al Grey have been overlooked. This document fills that void, combining historical context with thirteen transcriptions of Grey's trombone features and improvisations. Selection of transcribed materials was based on an examination of historically significant solos in Al Grey's fifty-five-year career. The results are a series of open-horn and plunger solos that showcase Grey's sound, technical brilliance, and wide range of dynamics and articulation. This collection includes performances from a mix of widely available and obscure recordings, the majority coming from engagements with the Count Basie Orchestra. Methods learned from the study of Al Grey's book Plunger Techniques were vital in the realization of his work. The digital transcription software Amazing Slow Downer by Roni Music aided in deciphering some of Grey's more complicated passages and, with octave displacement, helped bring previously inaudible moments to the foreground.
ContributorsHopkins, Charles E (Author) / Pilafian, Sam (Thesis advisor) / Stauffer, Sandra (Committee member) / Solís, Ted (Committee member) / Ericson, John (Committee member) / Kocour, Michael (Committee member) / Arizona State University (Publisher)
Created2011
150106-Thumbnail Image.png
Description
Optical receivers have many different uses covering simple infrared receivers, high speed fiber optic communication and light based instrumentation. All of them have an optical receiver that converts photons to current followed by a transimpedance amplifier to convert the current to a useful voltage. Different systems create different requirements for

Optical receivers have many different uses covering simple infrared receivers, high speed fiber optic communication and light based instrumentation. All of them have an optical receiver that converts photons to current followed by a transimpedance amplifier to convert the current to a useful voltage. Different systems create different requirements for each receiver. High speed digital communication require high throughput with enough sensitivity to keep the bit error rate low. Instrumentation receivers have a lower bandwidth, but higher gain and sensitivity requirements. In this thesis an optical receiver for use in instrumentation in presented. It is an entirely monolithic design with the photodiodes on the same substrate as the CMOS circuitry. This allows for it to be built into a focal-plane array, but it places some restriction on the area. It is also designed for in-situ testing and must be able to cancel any low frequency noise caused by ambient light. The area restrictions prohibit the use of a DC blocking capacitor to reject the low frequency noise. In place a servo loop was wrapped around the system to reject any DC offset. A modified Cherry-Hooper architecture was used for the transimpedance amplifier. This provides the flexibility to create an amplifier with high gain and wide bandwidth that is independent of the input capacitance. The downside is the increased complexity of the design makes stability paramount to the design. Another drawback is the high noise associated with low input impedance that decouples the input capacitance from the bandwidth. This problem is compounded by the servo loop feed which leaves the output noise of some amplifiers directly referred to the input. An in depth analysis of each circuit block's noise contribution is presented.
ContributorsLaFevre, Kyle (Author) / Bakkaloglu, Bertan (Thesis advisor) / Barnaby, Hugh (Committee member) / Vermeire, Bert (Committee member) / Arizona State University (Publisher)
Created2011
149909-Thumbnail Image.png
Description
ABSTRACT The purpose of this study is to demonstrate that stable lipid bilayers can be set up on an array of silicon micropores and can be used as sites for self-inserting ion-channel proteins which can be studied independently of each other. In course of this study an acrylic

ABSTRACT The purpose of this study is to demonstrate that stable lipid bilayers can be set up on an array of silicon micropores and can be used as sites for self-inserting ion-channel proteins which can be studied independently of each other. In course of this study an acrylic based holder was designed and machined to ensure leak-free fluidic access to the silicon micropores and physical isolation of the individual array channels. To measure the ion-channel currents, we simulated, designed and manufactured low-noise transimpedance amplifiers and support circuits based on published patch clamp amplifier designs, using currently available surface-mount components. This was done in order to achieve a reduction in size and costs as well as isolation of individual channels without the need for multiplexing of the input. During the experiments performed, stable bilayers were formed across an array of four vertically mounted 30 µm silicon micropores and OmpF porins were added for self insertion in each of the bilayers. To further demonstrate the independence of these bilayer recording sites, the antibiotic Ampicillin (2.5 mM) was added to one of the fluidic wells. The ionic current in each of the wells was recorded simultaneously. Sub-conductance states of Ompf porin were observed in two of the measurement sites. In addition, the conductance steps in the site containing the antibiotic could be clearly seen to be larger compared to those of the unmodified site. This is due to the transient blocking of ion flow through the porin due to translocation of the antibiotic. Based on this demonstration, ion-channel array reconstitution is a potential method for efficient electrophysiological characterization of different types of ion-channels simultaneously as well as for studying membrane permeation processes.
ContributorsRamakrishnan, Shankar (Author) / Goryll, Michael (Thesis advisor) / Thornton, Trevor J (Committee member) / Blain Christen, Jennifer M (Committee member) / Arizona State University (Publisher)
Created2011
150262-Thumbnail Image.png
Description
This study examines the experiences of participants enrolled in an online community college jazz history course. I surveyed the participants before the course began and observed them in the online space through the duration of the course. Six students also participated in interviews during and after the course. Coded data

This study examines the experiences of participants enrolled in an online community college jazz history course. I surveyed the participants before the course began and observed them in the online space through the duration of the course. Six students also participated in interviews during and after the course. Coded data from the interviews, surveys, and recorded discussion posts and journal entries provided evidence about the nature of interaction and engagement in learning in an online environment. I looked for evidence either supporting or detracting from a democratic online learning environment, concentrating on the categories of student engagement, freedom of expression, and accessibility. The data suggested that the participants' behaviors in and abilities to navigate the online class were influenced by their pre-existing native media habits. Participants' reasons for enrolling in the online course, which included convenience and schedule flexibility, informed their actions and behaviors in the class. Analysis revealed that perceived positive student engagement did not contribute to a democratic learning environment but rather to an easy, convenient experience in the online class. Finally, the data indicated that participants' behaviors in their future lives would not be affected by the online class in that their learning experiences were not potent enough to alter or inform their behavior in society. As online classes gain popularity, the ability of these classes to provide meaningful learning experiences must be questioned. Students in this online jazz history class presented, at times, a façade of participation and community building but demonstrated a lack of sincerity and interest in the course. The learning environment supported accessibility and freedom of expression to an extent, but students' engagement with their peers was limited. Overall, this study found a need for more research into the quality of online classes as learning platforms that support democracy, student-to-student interaction, and community building.
ContributorsHunter, Robert W. (Author) / Stauffer, Sandra L (Thesis advisor) / Tobias, Evan (Thesis advisor) / Bush, Jeffrey (Committee member) / Kocour, Michael (Committee member) / Pilafian, Sam (Committee member) / Arizona State University (Publisher)
Created2011