Matching Items (855)
Filtering by

Clear all filters

152204-Thumbnail Image.png
Description
This project sheds light on trombonist Andy Martin's improvisation and provides tools for further learning. A biographical sketch gives background on Martin, establishing him as a newer jazz master. Through the transcription and analysis of nine improvised solos, Martin's improvisational voice and vocabulary is deciphered and presented as a series

This project sheds light on trombonist Andy Martin's improvisation and provides tools for further learning. A biographical sketch gives background on Martin, establishing him as a newer jazz master. Through the transcription and analysis of nine improvised solos, Martin's improvisational voice and vocabulary is deciphered and presented as a series of seven thematic hooks. These patterns, rhythms, and gestures are described, analyzed, and presented as examples of how each is used in the solos. The hooks are also set as application exercises for learning jazz style and improvisation. These exercises demonstrate how to use Martin's hooks as a means for furthering one's own improvisation. A full method for successful transcription is also presented, along with the printed transcriptions and their accompanying information sheets.
ContributorsWilkinson, Michael Scott (Author) / Ericson, John (Thesis advisor) / Kocour, Michael (Committee member) / Solis, Theodore (Committee member) / Arizona State University (Publisher)
Created2013
151753-Thumbnail Image.png
Description
Solution conformations and dynamics of proteins and protein-DNA complexes are often difficult to predict from their crystal structures. The crystal structure only shows a snapshot of the different conformations these biological molecules can have in solution. Multiple different conformations can exist in solution and potentially have more importance in the

Solution conformations and dynamics of proteins and protein-DNA complexes are often difficult to predict from their crystal structures. The crystal structure only shows a snapshot of the different conformations these biological molecules can have in solution. Multiple different conformations can exist in solution and potentially have more importance in the biological activity. DNA sliding clamps are a family of proteins with known crystal structures. These clamps encircle the DNA and enable other proteins to interact more efficiently with the DNA. Eukaryotic PCNA and prokaryotic β clamp are two of these clamps, some of the most stable homo-oligomers known. However, their solution stability and conformational equilibrium have not been investigated in depth before. Presented here are the studies involving two sliding clamps: yeast PCNA and bacterial β clamp. These studies show that the β clamp has a very different solution stability than PCNA. These conclusions were reached through various different fluorescence-based experiments, including fluorescence correlation spectroscopy (FCS), Förster resonance energy transfer (FRET), single molecule fluorescence, and various time resolved fluorescence techniques. Interpretations of these, and all other, fluorescence-based experiments are often affected by the properties of the fluorophores employed. Often the fluorescence properties of these fluorophores are influenced by their microenvironments. Fluorophores are known to sometimes interact with biological molecules, and this can have pronounced effects on the rotational mobility and photophysical properties of the dye. Misunderstanding the effect of these photophysical and rotational properties can lead to a misinterpretation of the obtained data. In this thesis, photophysical behaviors of various organic dyes were studied in the presence of deoxymononucleotides to examine more closely how interactions between fluorophores and DNA bases can affect fluorescent properties. Furthermore, the properties of cyanine dyes when bound to DNA and the effect of restricted rotation on FRET are presented in this thesis. This thesis involves studying fluorophore photophysics in various microenvironments and then expanding into the solution stability and dynamics of the DNA sliding clamps.
ContributorsRanjit, Suman (Author) / Levitus, Marcia (Thesis advisor) / Lindsay, Stuart (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2013
151997-Thumbnail Image.png
Description
The fluorescence enhancement by a single Noble metal sphere is separated into excitation/absorption enhancement and the emission quantum yield enhancement. Incorporating the classical model of molecular spontaneous emission into the excitation/absorption transition, the excitation enhancement is calculated rigorously by electrodynamics in the frequency domain. The final formula for the excitation

The fluorescence enhancement by a single Noble metal sphere is separated into excitation/absorption enhancement and the emission quantum yield enhancement. Incorporating the classical model of molecular spontaneous emission into the excitation/absorption transition, the excitation enhancement is calculated rigorously by electrodynamics in the frequency domain. The final formula for the excitation enhancement contains two parts: the primary field enhancement calculated from the Mie theory, and a derating factor due to the backscattering field from the molecule. When compared against a simplified model that only involves the primary Mie theory field calculation, this more rigorous model indicates that the excitation enhancement near the surface of the sphere is quenched severely due to the back-scattering field from the molecule. The degree of quenching depends in part on the bandwidth of the illumination because the presence of the sphere induces a red-shift in the absorption frequency of the molecule and at the same time broadens its spectrum. Monochromatic narrow band illumination at the molecule's original (unperturbed) resonant frequency yields large quenching. For the more realistic broadband illumination scenario, we calculate the final enhancement by integrating over the excitation/absorption spectrum. The numerical results indicate that the resonant illumination scenario overestimates the quenching and therefore would underestimate the total excitation enhancement if the illumination has a broader bandwidth than the molecule. Combining the excitation model with the exact Electrodynamical theory for emission, the complete realistic model demonstrates that there is a potential for significant fluorescence enhancement only for the case of a low quantum yield molecule close to the surface of the sphere. General expressions of the fluorescence enhancement for arbitrarily-shaped metal antennas are derived. The finite difference time domain method is utilized for analyzing these complicated antenna structures. We calculate the total excitation enhancement for the two-sphere dimer. Although the enhancement is greater in this case than for the single sphere, because of the derating effects the total enhancement can never reach the local field enhancement. In general, placing molecules very close to a plasmonic antenna surface yields poor enhancement because the local field is strongly affected by the molecular self-interaction with the metal antenna.
ContributorsZhang, Zhe (Author) / Diaz, Rodolfo E (Thesis advisor) / Lim, Derrick (Thesis advisor) / Pan, George (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2013
151665-Thumbnail Image.png
Description
Jazz continues, into its second century, as one of the most important musics taught in public middle and high schools. Even so, research related to how students learn, especially in their earliest interactions with jazz culture, is limited. Weaving together interviews and observations of junior and senior high school jazz

Jazz continues, into its second century, as one of the most important musics taught in public middle and high schools. Even so, research related to how students learn, especially in their earliest interactions with jazz culture, is limited. Weaving together interviews and observations of junior and senior high school jazz players and teachers, private studio instructors, current university students majoring in jazz, and university and college jazz faculty, I developed a composite sketch of a secondary school student learning to play jazz. Using arts-based educational research methods, including the use of narrative inquiry and literary non-fiction, the status of current jazz education and the experiences by novice jazz learners is explored. What emerges is a complex story of students and teachers negotiating the landscape of jazz in and out of early twenty-first century public schools. Suggestions for enhancing jazz experiences for all stakeholders follow, focusing on access and the preparation of future jazz teachers.
ContributorsKelly, Keith B (Author) / Stauffer, Sandra (Thesis advisor) / Tobias, Evan (Committee member) / Kocour, Michael (Committee member) / Sullivan, Jill (Committee member) / Schmidt, Margaret (Committee member) / Arizona State University (Publisher)
Created2013
152290-Thumbnail Image.png
Description
Concerto for Piano and Chamber Orchestra was conceived in February of 2013, and conceptually it is my attempt to fuse personal expressions of jazz and classical music into one fully realized statement. It is a three movement work (fast, slow, fast) for 2 fl., 2 ob., 2 cl., bsn., 2

Concerto for Piano and Chamber Orchestra was conceived in February of 2013, and conceptually it is my attempt to fuse personal expressions of jazz and classical music into one fully realized statement. It is a three movement work (fast, slow, fast) for 2 fl., 2 ob., 2 cl., bsn., 2 hrn., 2 tpt., tbn., pno., perc., str. (6,4,2,2,1). The work is approximately 27 minutes in duration. The first movement of the Concerto is written in a fluid sonata form. A fugato begins where the second theme would normally appear, and the second theme does not fully appear until near the end of the solo piano section. The result is that the second theme when finally revealed is so reminiscent of the history of jazz and classical synthesis that it does not sound completely new, and in fact is a return of something that was heard before, but only hinted at in this piece. The second movement is a kind of deconstructive set of variations, with a specific theme and harmonic pattern implied throughout the movement. However, the full theme is not disclosed until the final variation. The variations are interrupted by moments of pure rhythmic music, containing harmony made up of major chords with an added fourth, defying resolution, and dissolving each time back into a new variation. The third movement is in rondo form, using rhythmic and harmonic influences from jazz. The percussion plays a substantial role in this movement, acting as a counterpoint to the piano part throughout. This movement and the piece concludes with an extended coda, inspired indirectly by the simple complexities of an improvisational piano solo, building in complexity as the concerto draws to a close.
ContributorsSneider, Elliot (Author) / Rogers, Rodney (Thesis advisor) / DeMars, James (Committee member) / Hackbarth, Glenn (Committee member) / Solis, Theodore (Committee member) / Arizona State University (Publisher)
Created2013
152445-Thumbnail Image.png
Description
Glioblastoma (GBM) is the most common primary brain tumor with an incidence of approximately 11,000 Americans. Despite decades of research, average survival for GBM patients is a modest 15 months. Increasing the extent of GBM resection increases patient survival. However, extending neurosurgical margins also threatens the removal of eloquent brain.

Glioblastoma (GBM) is the most common primary brain tumor with an incidence of approximately 11,000 Americans. Despite decades of research, average survival for GBM patients is a modest 15 months. Increasing the extent of GBM resection increases patient survival. However, extending neurosurgical margins also threatens the removal of eloquent brain. For this reason, the infiltrative nature of GBM is an obstacle to its complete resection. We hypothesize that targeting genes and proteins that regulate GBM motility, and developing techniques that safely enhance extent of surgical resection, will improve GBM patient survival by decreasing infiltration into eloquent brain regions and enhancing tumor cytoreduction during surgery. Chapter 2 of this dissertation describes a gene and protein we identified; aquaporin-1 (aqp1) that enhances infiltration of GBM. In chapter 3, we describe a method for enhancing the diagnostic yield of GBM patient biopsies which will assist in identifying future molecular targets for GBM therapies. In chapter 4 we develop an intraoperative optical imaging technique that will assist identifying GBM and its infiltrative margins during surgical resection. The topic of this dissertation aims to target glioblastoma infiltration from molecular and cellular biology and neurosurgical disciplines. In the introduction we; 1. Provide a background of GBM and current therapies. 2. Discuss a protein we found that decreases GBM survival. 3. Describe an imaging modality we utilized for improving the quality of accrued patient GBM samples. 4. We provide an overview of intraoperative contrast agents available for neurosurgical resection of GBM, and discuss a new agent we studied for intraoperative visualization of GBM.
ContributorsGeorges, Joseph F (Author) / Feuerstein, Burt G (Thesis advisor) / Smith, Brian H. (Thesis advisor) / Van Keuren-Jensen, Kendall (Committee member) / Deviche, Pierre (Committee member) / Bennett, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
153466-Thumbnail Image.png
Description
Fluorescence spectroscopy is a popular technique that has been particularly useful in probing biological systems, especially with the invention of single molecule fluorescence. For example, Förster resonance energy transfer (FRET) is one tool that has been helpful in probing distances and conformational changes in biomolecules. In this work, important properties

Fluorescence spectroscopy is a popular technique that has been particularly useful in probing biological systems, especially with the invention of single molecule fluorescence. For example, Förster resonance energy transfer (FRET) is one tool that has been helpful in probing distances and conformational changes in biomolecules. In this work, important properties necessary in the quantification of FRET were investigated while FRET was also applied to gain insight into the dynamics of biological molecules. In particular, dynamics of damaged DNA was investigated. While damages in DNA are known to affect DNA structure, what remains unclear is how the presence of a lesion, or multiple lesions, affects the flexibility of DNA, especially in relation to damage recognition by repair enzymes. DNA conformational dynamics was probed by combining FRET and fluorescence anisotropy along with biochemical assays. The focus of this work was to investigate the relationship between dynamics and enzymatic repair. In addition, to properly quantify fluorescence and FRET data, photophysical phenomena of fluorophores, such as blinking, needs to be understood. The triplet formation of the single molecule dye TAMRA and the photoisomerization yield of two different modifications of the single molecule cyanine dye Cy3 were examined spectroscopically to aid in accurate data interpretation. The combination of the biophysical and physiochemical studies illustrates how fluorescence spectroscopy can be used to answer biological questions.
ContributorsShepherd Stennett, Elana Maria (Author) / Levitus, Marcia (Thesis advisor) / Ros, Robert (Committee member) / Liu, Yan (Committee member) / Arizona State University (Publisher)
Created2015
153476-Thumbnail Image.png
Description
The focus of this thesis is to study dissolved organic carbon composition and reactivity along the Colorado and Green Rivers. Dissolved organic carbon (DOC) in large-scale, managed rivers is relatively poorly studied as most literature has focused on pristine unmanaged rivers. The Colorado River System is the 7th largest in

The focus of this thesis is to study dissolved organic carbon composition and reactivity along the Colorado and Green Rivers. Dissolved organic carbon (DOC) in large-scale, managed rivers is relatively poorly studied as most literature has focused on pristine unmanaged rivers. The Colorado River System is the 7th largest in the North America; there are seventeen large dams along the Colorado and Green River. DOC in rivers and in the lakes formed by dams (reservoirs) undergo photo-chemical and bio-degradation. DOC concentration and composition in these systems were investigated using bulk concentration, optical properties, and fluorescence spectroscopy. The riverine DOC concentration decreased from upstream to downstream but there was no change in the specific ultraviolet absorbance at 254 nm (SUVA254). Total fluorescence also decreased along the river. In general, the fluorescence index (FI) increased slightly, the humification index (HIX) decreased, and the freshness index (β/α) increased from upstream to downstream. Photo-oxidation and biodegradation experiments were used to determine if the observed changes in DOC composition along the river could be driven by these biogeochemical alteration processes.

In two-week natural sunlight photo-oxidation experiments the DOC concentration did not change, while the SUVA254 and TF decreased. In addition, the FI and ‘freshness’ increased and HIX decreased during photo-oxidation. Photo-oxidation can explain the upstream to downstream trends for TF, FI, HIX, and freshness observed in river water. Serial photo-oxidation and biodegradation experiments were performed on water collected from three sites along the Colorado River. Bulk DOC concentration in all samples decreased during the biodegradation portion of the study, but DOC bioavailability was lower in samples that were photo-oxidized prior to the bioavailability study.

The upstream to downstream trends in DOC concentration and composition along the river can be explained by a combination of photo-chemical and microbial degradation. The bulk DOC concentration change is primarily driven by microbial degradation, while the changes in the composition of the fluorescent DOC are driven by photo-oxidation.
ContributorsBowman, Margaret (Author) / Hartnett, Hilairy E (Thesis advisor) / Hayes, Mark A. (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2015
153074-Thumbnail Image.png
Description
Identification of early damage in polymer composite materials is of significant importance so that preventative measures can be taken before the materials reach catastrophic failure. Scientists have been developing damage detection technologies over many years and recently, mechanophore-based polymers, in which mechanical energy is translated to activate a chemical transformation,

Identification of early damage in polymer composite materials is of significant importance so that preventative measures can be taken before the materials reach catastrophic failure. Scientists have been developing damage detection technologies over many years and recently, mechanophore-based polymers, in which mechanical energy is translated to activate a chemical transformation, have received increasing attention. More specifically, the damage can be made detectable by mechanochromic polymers, which provide a visible color change upon the scission of covalent bonds under stress. This dissertation focuses on the study of a novel self-sensing framework for identifying early and in-situ damage by employing unique stress-sensing mechanophores. Two types of mechanophores, cyclobutane and cyclooctane, were utilized, and the former formed from cinnamoyl moeities and the latter formed from anthracene upon photodimerization. The effects on the thermal and mechanical properties with the addition of the cyclobutane-based polymers into epoxy matrices were investigated. The emergence of cracks was detected by fluorescent signals at a strain level right after the yield point of the polymer blends, and the fluorescence intensified with the accumulation of strain. Similar to the mechanism of fluorescence emission from the cleavage of cyclobutane, the cyclooctane moiety generated fluorescent emission with a higher quantum yield upon cleavage. The experimental results also demonstrated the success of employing the cyclooctane type mechanophore as a potential force sensor, as the fluorescence intensification was correlated with the strain increase.
ContributorsZou, Jin (Author) / Dai, Lenore L (Thesis advisor) / Chattopadhyay, Aditi (Thesis advisor) / Lind, Mary L (Committee member) / Mu, Bin (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2014
153284-Thumbnail Image.png
Description
This multiple-case study addresses the nature of the out-of-school musical engagements of four undergraduate students who were enrolled as jazz studies majors in a large school of music in the U.S. southwest. It concerns what they did musically when they were outside of school, why they did what they did,

This multiple-case study addresses the nature of the out-of-school musical engagements of four undergraduate students who were enrolled as jazz studies majors in a large school of music in the U.S. southwest. It concerns what they did musically when they were outside of school, why they did what they did, what experiences they said they learned from, and how their out-of-school engagements related to their in-school curriculum. Research on jazz education, informal learning practices in music, and the in-school and out-of-school experiences of students informed this study. Data were generated through observation, interviews, video blogs (vlogs), and SMS text messages.

Analysis of data revealed that participants engaged with music when outside of school by practicing, teaching, gigging, recording, playing music with others, attending live musical performances, socializing with other musicians, listening, and engaging with non-jazz musical styles (aside from listening). They engaged with music because of: 1) the love of music, 2) the desire for musical excellence, 3) financial considerations, 4) the aspiration to affect others positively with music, and 5) the connection with other musicians. Participants indicated that they learned by practicing, listening to recordings, attending live performances, playing paid engagements, socializing, teaching, and reading. In-school and out-of-school experience and learning had substantial but not complete overlap.

The study implies that a balance between in-school and out-of-school musical experience may help undergraduate jazz studies students to maximize their overall musical learning. It also suggests that at least some jazz studies majors are fluent in a wide variety of music learning practices that make them versatile, flexible, and employable musicians. Further implications are provided for undergraduate jazz students as well as collegiate jazz educators, the music education profession, and schools of music. Additional implications concern future research and the characterization of jazz study in academia.
ContributorsLibman, Jeffrey B (Author) / Tobias, Evan (Thesis advisor) / Kocour, Michael (Committee member) / Schmidt, Margaret (Committee member) / Solis, Theodore (Committee member) / Stauffer, Sandra (Committee member) / Arizona State University (Publisher)
Created2014