Matching Items (5)
Filtering by

Clear all filters

156984-Thumbnail Image.png
Description
Polymer fibers have broad applications in wearable electronics, bulletproof vests, batteries, fuel cells, filters, electrodes, conductive wires, and biomedical materials. Polymer fibers display light density and flexibility but are mostly weak and compliant. The ceramic, metallic, and carbon nanoparticles have been frequently included in polymers for fabricating continuous, durable, and

Polymer fibers have broad applications in wearable electronics, bulletproof vests, batteries, fuel cells, filters, electrodes, conductive wires, and biomedical materials. Polymer fibers display light density and flexibility but are mostly weak and compliant. The ceramic, metallic, and carbon nanoparticles have been frequently included in polymers for fabricating continuous, durable, and functional composite fibers. Nanoparticles display large specific areas, low defect density and can transfer their superior properties to polymer matrices. The main focus of this thesis is to design, fabricate and characterize the polymer
anocarbon composite fibers with unique microstructures and improved mechanical/thermal performance. The dispersions and morphologies of graphene nanoplatelets (GNPs), the interactions with polyvinyl alcohol (PVA) molecules and their influences on fiber properties are studied. The fibers were fabricated using a dry-jet wet spinning method with engineered spinneret design. Three different structured fibers were fabricated, namely, one-phase polymer fiber (1-phase), two-phase core-shell composite fiber (2-phase), and three-phase co-axial composite fiber (3-phase). These polymer or composite fibers were processed at three stages with drawing temperatures of 100˚C, 150˚C, and 200˚C. Different techniques including the mechanical tester, wide-angle X-Ray diffraction (WAXD), scanning electron microscope (SEM), thermogravimetric analysis (TGA), and differential scanning calorimeter (DSC) have been used to characterize the fiber microstructures and properties.
ContributorsVerma, Rahul (Author) / Song, Kenan (Thesis advisor) / Jiang, Hanqing (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2018
189279-Thumbnail Image.png
Description
For the past two centuries, coal has played a vital role as the primary carbon source, fueling industries and enabling the production of essential carbon-rich materials, including carbon nanotubes, graphite, and diamond. However, the global transition towards sustainable energy production has resulted in a decline in coal usage for energy

For the past two centuries, coal has played a vital role as the primary carbon source, fueling industries and enabling the production of essential carbon-rich materials, including carbon nanotubes, graphite, and diamond. However, the global transition towards sustainable energy production has resulted in a decline in coal usage for energy purposes, with the United States alone witnessing a substantial 50% reduction over the past decade. This shift aligns with the UN’s 2030 sustainability goals, which emphasize the reduction of greenhouse gas emissions and the promotion of cleaner energy sources. Despite the decreased use in energy production, the abundance of coal has sparked interest in exploring its potential for other sustainable and valuable applications.In this context, Direct Ink Writing (DIW) has emerged as a promising additive manufacturing technique that employs liquid or gel-like resins to construct three-dimensional structures. DIW offers a unique advantage by allowing the incorporation of particulate reinforcements, which enhance the properties and functionalities of the materials. This study focuses on evaluating the viability of coal as a sustainable and cost-effective substitute for other carbon-based reinforcements, such as graphite or carbon nanotubes. The research utilizes a thermosetting resin based on phenol-formaldehyde (commercially known as Bakelite) as the matrix, while pulverized coal (250 µm) and carbon black (CB) function as the reinforcements. The DIW ink is meticulously formulated to exhibit shear-thinning behavior, facilitating uniform and continuous printing of structures. Mechanical property testing of the printed structures was conducted following ASTM standards. Interestingly, the study reveals that incorporating a 2 wt% concentration of coal in the resin yields the most significant improvements in tensile modulus and flexural strength, with enhancements of 35% and 12.5% respectively. These findings underscore the promising potential of coal as a sustainable and environmentally friendly reinforcement material in additive manufacturing applications. By harnessing the unique properties of coal, this research opens new avenues for its utilization in the pursuit of greener and more efficient manufacturing processes.
ContributorsSundaravadivelan, Barath (Author) / Song, Kenan (Thesis advisor) / Marvi, Hamidreza (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2023
187525-Thumbnail Image.png
Description
Progressive miniaturization in electronics demands advanced materials with excellent energy conversion and transport properties. Opportunities exist in novel material morphologies such as hierarchical structures, multi-functional composites and nanoscale architectures which may offer mechanical, thermal and electronic properties tailored to a wide range of applications (e.g., aerospace, robotics, biomedical etc.). However,

Progressive miniaturization in electronics demands advanced materials with excellent energy conversion and transport properties. Opportunities exist in novel material morphologies such as hierarchical structures, multi-functional composites and nanoscale architectures which may offer mechanical, thermal and electronic properties tailored to a wide range of applications (e.g., aerospace, robotics, biomedical etc.). However, the manufacturing capabilities have always posed a grand challenge in realizing the advanced material morphologies. Furthermore, the multi-scale modeling of complex material architectures has been extremely challenging owing to the limitations in computation methodologies and lack of understanding in nano-/micro-meter scale physics. To address these challenges, this work considers the morphology effect on carbon nanotube (CNT)-based composites, CNT fibers and thermoelectric (TE) materials. First, this work reports additively manufacturable TE morphologies and analyzes the thermo-electric transport behavior. This research introduces innovative honeycomb TE architectures that showed ~26% efficiency increase and ~25% density reduction compared to conventional rectangular TE architectures. Moreover, this work presents 3D printable compositionally segmented TE architecture which provides record-high efficiencies (up to 8.7%) over wide temperature ranges if the composition and aspect ratio of multiple TE materials are optimized within a single TE device. Next, this research proposes computationally efficient two-dimensional (2D) finite element model (FEM) to study the electrical and thermal properties in CNT based composites by simultaneously considering the stochastic CNT distributions, CNT fractions (upto 80%) and interfacial resistances. The FEM allows to estimate the theoretical maximum possible conductivities with corresponding interfacial resistances if the CNT morphologies are carefully controlled, along with appreciable insight into the energy transport physics. Then, this work proposes a data-driven surrogate model based on convolutional neural networks to rapidly approximate the composite conductivities in a second with accuracy > 98%, compared to FEM taking >100 minutes per simulation. Finally, this research presents a pseudo 2D FEM to approximate the electrical and thermal properties in CNT fibers at various CNT aspect ratios (up to 10,000) by simultaneously considering CNT-CNT interfacial effects along with the stochastic distribution of inter-bundle voids.
ContributorsEjaz, Faizan (Author) / Kwon, Beomjin (Thesis advisor) / Zhuang, Houlong (Committee member) / Song, Kenan (Committee member) / Wang, Robert (Committee member) / Kang, Wonmo (Committee member) / Arizona State University (Publisher)
Created2023
171991-Thumbnail Image.png
Description
This dissertation is focused on the rheology scaling of metal particle reinforced polymermatrix composite made of solid and nanoporous metal powders to enable their continuous 3D printing at high (>60vol%) metal content. There remained a specific knowledge gap on how to predict successful extrusion with densely packed metals by utilizing their suspension melt

This dissertation is focused on the rheology scaling of metal particle reinforced polymermatrix composite made of solid and nanoporous metal powders to enable their continuous 3D printing at high (>60vol%) metal content. There remained a specific knowledge gap on how to predict successful extrusion with densely packed metals by utilizing their suspension melt rheological properties. In the first project, the scaling of the dynamic viscosity of melt-extrudate filaments made of Polylactic acid (PLA) and gas-atomized solid NiCu powders was studied as a function of the metal’s volumetric packing and feedstock pre-mixing strategies and correlated to its extrudability performance, which fitted well with the Krieger-Dougherty analytical model. 63.4 vol% Filaments were produced by employing solution-mixing strategy to reduce sintered part porosity and shrinkage. After sintering, the linear shrinkage dropped by 76% compared to the physical mixing. By characterizing metal particle reinforced polymer matrix composite feedstock via flow-sweep rheology, a distinct extension of shear-thinning towards high shear rates (i.e. 100 s-1) was observed at high metal content – a result that was attributed to the improved wall adhesion. In comparison, physically mixed filament failed to sustain more than 10s-1 shear rate proving that they were prone to wall slippage at a higher shear rate, giving an insight into the onset of extrusion jamming. In the second project, nanoporous copper made out of electroless chemical dealloying was utilized as fillers, because of their unique physiochemical properties. The role of capillary imbibition of polymers into metal nanopores was investigated to understand their effect on density, zero-shear viscosity, and shear thinning. It was observed that, although the polymeric fluid’s transient concentration regulates its wettability, the polymer chain length ultimately dictates its melt rheology, which consequentially facilitates densification of pores during vacuum annealing. Finally, it was demonstrated that higher imbibition into nanopores leads to extrusion failure due to a combined effect of volumetric packing increase and nanoconfinement, providing a deterministic materials design tool to enable continuous 3D printing. The outcome of this study might be beneficial to integrate nanoporous metals into binder-based 3D printing technology to fabricate interdigitated battery electrodes and multifunctional 3D printed electronics.
ContributorsHasib, Amm (Author) / Azeredo, Bruno (Thesis advisor) / Song, Kenan (Thesis advisor) / Nian, Qiong (Committee member) / Kwon, Beomjin (Committee member) / Li, Xiangjia (Committee member) / Arizona State University (Publisher)
Created2022
158329-Thumbnail Image.png
Description
Precursors of carbon fibers include rayon, pitch, and polyacrylonitrile fibers that can be heat-treated for high-strength or high-modulus carbon fibers. Among them, polyacrylonitrile has been used most frequently due to its low viscosity for easy processing and excellent performance for high-end applications. To further explore polyacrylonitrile-based fibers for better precursors,

Precursors of carbon fibers include rayon, pitch, and polyacrylonitrile fibers that can be heat-treated for high-strength or high-modulus carbon fibers. Among them, polyacrylonitrile has been used most frequently due to its low viscosity for easy processing and excellent performance for high-end applications. To further explore polyacrylonitrile-based fibers for better precursors, in this study, carbon nanofillers were introduced in the polymer matrix to examine their reinforcement effects and influences on carbon fiber performance. Two-dimensional graphene nanoplatelets were mainly used for the polymer reinforcement and one-dimensional carbon nanotubes were also incorporated in polyacrylonitrile as a comparison. Dry-jet wet spinning was used to fabricate the composite fibers. Hot-stage drawing and heat-treatment were used to evolve the physical microstructures and molecular morphologies of precursor and carbon fibers. As compared to traditionally used random dispersions, selective placement of nanofillers was effective in improving composite fiber properties and enhancing mechanical and functional behaviors of carbon fibers. The particular position of reinforcement fillers with polymer layers was enabled by the in-house developed spinneret used for fiber spinning. The preferential alignment of graphitic planes contributed to the enhanced mechanical and functional behaviors than those of dispersed nanoparticles in polyacrylonitrile composites. The high in-plane modulus of graphene and the induction to polyacrylonitrile molecular carbonization/graphitization were the motivation for selectively placing graphene nanoplatelets between polyacrylonitrile layers. Mechanical tests, scanning electron microscopy, thermal, and electrical properties were characterized. Applications such as volatile organic compound sensing and pressure sensing were demonstrated.
ContributorsFranklin, Rahul Joseph (Author) / Song, Kenan (Thesis advisor) / Jiao, Yang (Thesis advisor) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2020