Matching Items (3)
Filtering by

Clear all filters

152074-Thumbnail Image.png
Description
Locomotion of microorganisms is commonly observed in nature and some aspects of their motion can be replicated by synthetic motors. Synthetic motors rely on a variety of propulsion mechanisms including auto-diffusiophoresis, auto-electrophoresis, and bubble generation. Regardless of the source of the locomotion, the motion of any motor can be characterized

Locomotion of microorganisms is commonly observed in nature and some aspects of their motion can be replicated by synthetic motors. Synthetic motors rely on a variety of propulsion mechanisms including auto-diffusiophoresis, auto-electrophoresis, and bubble generation. Regardless of the source of the locomotion, the motion of any motor can be characterized by the translational and rotational velocity and effective diffusivity. In a uniform environment the long-time motion of a motor can be fully characterized by the effective diffusivity. In this work it is shown that when motors possess both translational and rotational velocity the motor transitions from a short-time diffusivity to a long-time diffusivity at a time of pi/w. The short-time diffusivities are two to three orders of magnitude larger than the diffusivity of a Brownian sphere of the same size, increase linearly with concentration, and scale as v^2/2w. The measured long-time diffusivities are five times lower than the short-time diffusivities, scale as v^2/{2Dr [1 + (w/Dr )^2]}, and exhibit a maximum as a function of concentration. The variation of a colloid's velocity and effective diffusivity to its local environment (e.g. fuel concentration) suggests that the motors can accumulate in a bounded system, analogous to biological chemokinesis. Chemokinesis of organisms is the non-uniform equilibrium concentration that arises from a bounded random walk of swimming organisms in a chemical concentration gradient. In non-swimming organisms we term this response diffusiokinesis. We show that particles that migrate only by Brownian thermal motion are capable of achieving non-uniform pseudo equilibrium distribution in a diffusivity gradient. The concentration is a result of a bounded random-walk process where at any given time a larger percentage of particles can be found in the regions of low diffusivity than in regions of high diffusivity. Individual particles are not trapped in any given region but at equilibrium the net flux between regions is zero. For Brownian particles the gradient in diffusivity is achieved by creating a viscosity gradient in a microfluidic device. The distribution of the particles is described by the Fokker-Planck equation for variable diffusivity. The strength of the probe concentration gradient is proportional to the strength of the diffusivity gradient and inversely proportional to the mean probe diffusivity in the channel in accordance with the no flux condition at steady state. This suggests that Brownian colloids, natural or synthetic, will concentrate in a bounded system in response to a gradient in diffusivity and that the magnitude of the response is proportional to the magnitude of the gradient in diffusivity divided by the mean diffusivity in the channel.
ContributorsMarine, Nathan Arasmus (Author) / Posner, Jonathan D (Thesis advisor) / Adrian, Ronald J (Committee member) / Frakes, David (Committee member) / Phelan, Patrick E (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
150803-Thumbnail Image.png
Description
Structural features of canonical wall-bounded turbulent flows are described using several techniques, including proper orthogonal decomposition (POD). The canonical wall-bounded turbulent flows of channels, pipes, and flat-plate boundary layers include physics important to a wide variety of practical fluid flows with a minimum of geometric complications. Yet, significant questions remain

Structural features of canonical wall-bounded turbulent flows are described using several techniques, including proper orthogonal decomposition (POD). The canonical wall-bounded turbulent flows of channels, pipes, and flat-plate boundary layers include physics important to a wide variety of practical fluid flows with a minimum of geometric complications. Yet, significant questions remain for their turbulent motions' form, organization to compose very long motions, and relationship to vortical structures. POD extracts highly energetic structures from flow fields and is one tool to further understand the turbulence physics. A variety of direct numerical simulations provide velocity fields suitable for detailed analysis. Since POD modes require significant interpretation, this study begins with wall-normal, one-dimensional POD for a set of turbulent channel flows. Important features of the modes and their scaling are interpreted in light of flow physics, also leading to a method of synthesizing one-dimensional POD modes. Properties of a pipe flow simulation are then studied via several methods. The presence of very long streamwise motions is assessed using a number of statistical quantities, including energy spectra, which are compared to experiments. Further properties of energy spectra, including their relation to fictitious forces associated with mean Reynolds stress, are considered in depth. After reviewing salient features of turbulent structures previously observed in relevant experiments, structures in the pipe flow are examined in greater detail. A variety of methods reveal organization patterns of structures in instantaneous fields and their associated vortical structures. Properties of POD modes for a boundary layer flow are considered. Finally, very wide modes that occur when computing POD modes in all three canonical flows are compared. The results demonstrate that POD extracts structures relevant to characterizing wall-bounded turbulent flows. However, significant care is necessary in interpreting POD results, for which modes can be categorized according to their self-similarity. Additional analysis techniques reveal the organization of smaller motions in characteristic patterns to compose very long motions in pipe flows. The very large scale motions are observed to contribute large fractions of turbulent kinetic energy and Reynolds stress. The associated vortical structures possess characteristics of hairpins, but are commonly distorted from pristine hairpin geometries.
ContributorsBaltzer, Jon Ronald (Author) / Adrian, Ronald J (Thesis advisor) / Calhoun, Ronald (Committee member) / Gelb, Anne (Committee member) / Herrmann, Marcus (Committee member) / Squires, Kyle D (Committee member) / Arizona State University (Publisher)
Created2012
Description
Rapid expansion of dense beds of fine, spherical particles subjected to rapid depressurization is studied in a vertical shock tube. As the particle bed is unloaded, a high-speed video camera captures the dramatic evolution of the particle bed structure. Pressure transducers are used to measure the dynamic pressure changes during

Rapid expansion of dense beds of fine, spherical particles subjected to rapid depressurization is studied in a vertical shock tube. As the particle bed is unloaded, a high-speed video camera captures the dramatic evolution of the particle bed structure. Pressure transducers are used to measure the dynamic pressure changes during the particle bed expansion process. Image processing, signal processing, and Particle Image Velocimetry techniques, are used to examine the relationships between particle size, initial bed height, bed expansion rate, and gas velocities.

The gas-particle interface and the particle bed as a whole expand and evolve in stages. First, the bed swells nearly homogeneously for a very brief period of time (< 2ms). Shortly afterward, the interface begins to develop instabilities as it continues to rise, with particles nearest the wall rising more quickly. Meanwhile, the bed fractures into layers and then breaks down further into cellular-like structures. The rate at which the structural evolution occurs is shown to be dependent on particle size. Additionally, the rate of the overall bed expansion is shown to be dependent on particle size and initial bed height.

Taller particle beds and beds composed of smaller-diameter particles are found to be associated with faster bed-expansion rates, as measured by the velocity of the gas-particle interface. However, the expansion wave travels more slowly through these same beds. It was also found that higher gas velocities above the the gas-particle interface measured \textit{via} Particle Image Velocimetry or PIV, were associated with particle beds composed of larger-diameter particles. The gas dilation between the shocktube diaphragm and the particle bed interface is more dramatic when the distance between the gas-particle interface and the diaphragm is decreased-as is the case for taller beds.

To further elucidate the complexities of this multiphase compressible flow, simple OpenFOAM (Weller, 1998) simulations of the shocktube experiment were performed and compared to bed expansion rates, pressure fluctuations, and gas velocities. In all cases, the trends and relationships between bed height, particle diameter, with expansion rates, pressure fluctuations and gas velocities matched well between experiments and simulations. In most cases, the experimentally-measured bed rise rates and the simulated bed rise rates matched reasonably well in early times. The trends and overall values of the pressure fluctuations and gas velocities matched well between the experiments and simulations; shedding light on the effects each parameter has on the overall flow.
ContributorsZunino, Heather (Author) / Adrian, Ronald J (Thesis advisor) / Clarke, Amanda (Committee member) / Chen, Kangping (Committee member) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2019