Matching Items (64)

Filtering by

Clear all filters

133654-Thumbnail Image.png

In situ SEM Testing for Fatigue Crack Growth: Mechanical Investigation of Titanium

Description

Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V,

Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V, at the sub-cycle scale, or within a single loading cycle. Using scanning electron microscopy (SEM), imaging analysis is performed to observe crack behavior at ten loading steps throughout the loading and unloading paths. Analysis involves measuring the incremental crack growth and crack tip opening displacement (CTOD) of specimens at loading ratios of 0.1, 0.3, and 0.5. This report defines the relationship between crack growth and the stress intensity factor, K, of the specimens, as well as the relationship between the R-ratio and stress opening level. The crack closure phenomena and effect of microcracks are discussed as they influence the crack growth behavior. This method has previously been used to characterize crack growth in Al 7075-T6. The results for Ti-6Al-4V are compared to these previous findings in order to strengthen conclusions about crack growth behavior.

Contributors

Agent

Created

Date Created
2018-05

136339-Thumbnail Image.png

Local Mechanical Behavior of Hastelloy-X at High Temperatures and Its Relationship to Failure

Description

The following is a report that will evaluate the microstructure of the nickel-based superalloy Hastelloy X and its relationship to mechanical properties in different load conditions. Hastelloy X is of interest to the company AORA because its strength and oxidation

The following is a report that will evaluate the microstructure of the nickel-based superalloy Hastelloy X and its relationship to mechanical properties in different load conditions. Hastelloy X is of interest to the company AORA because its strength and oxidation resistance at high temperatures is directly applicable to their needs in a hybrid concentrated solar module. The literature review shows that the microstructure will produce different carbides at various temperatures, which can be beneficial to the strength of the alloy. These precipitates are found along the grain boundaries and act as pins that limit dislocation flow, as well as grain boundary sliding, and improve the rupture strength of the material. Over time, harmful precipitates form which counteract the strengthening effect of the carbides and reduce rupture strength, leading to failure. A combination of indentation and microstructure mapping was used in an effort to link local mechanical behavior to microstructure variability. Electron backscatter diffraction (EBSD) and energy dispersive spectroscopy (EDS) were initially used as a means to characterize the microstructure prior to testing. Then, a series of room temperature Vickers hardness tests at 50 and 500 gram-force were used to evaluate the variation in the local response as a function of indentation size. The room temperature study concluded that both the hardness and standard deviation increased at lower loads, which is consistent with the grain size distribution seen in the microstructure scan. The material was then subjected to high temperature spherical indentation. Load-displacement curves were essential in evaluating the decrease in strength of the material with increasing temperature. Through linear regression of the unloading portion of the curve, the plastic deformation was determined and compared at different temperatures as a qualitative method to evaluate local strength.

Contributors

Agent

Created

Date Created
2015-05

Adaptive Technologies using Soft Robotic Bladders

Description

The traditional understanding of robotics includes mechanisms of rigid structures, which can manipulate surrounding objects, taking advantage of mechanical actuators such as motors and servomechanisms. Although these methods provide the underlying fundamental concepts behind much of modern technological infrastructure, in

The traditional understanding of robotics includes mechanisms of rigid structures, which can manipulate surrounding objects, taking advantage of mechanical actuators such as motors and servomechanisms. Although these methods provide the underlying fundamental concepts behind much of modern technological infrastructure, in fields such as manufacturing, automation, and biomedical application, the robotic structures formed by rigid axels on mechanical actuators lack the delicate differential sensors and actuators associated with known biological systems. The rigid structures of traditional robotics also inhibit the use of simple mechanisms in congested and/or fragile environments. By observing a variety of biological systems, it is shown that nature models its structures over millions of years of evolution into a combination of soft structures and rigid skeletal interior supports. Through technological bio-inspired designs, researchers hope to mimic some of the complex behaviors of biological mechanisms using pneumatic actuators coupled with highly compliant materials that exhibit relatively large reversible elastic strain. This paper begins the brief history of soft robotics, the various classifications of pneumatic fluid systems, the associated difficulties that arise with the unpredictable nature of fluid reactions, the methods of pneumatic actuators in use today, the current industrial applications of soft robotics, and focuses in large on the construction of a universally adaptable soft robotic gripper and material application tool. The central objective of this experiment is to compatibly pair traditional rigid robotics with the emerging technologies of sort robotic actuators. This will be done by combining a traditional rigid robotic arm with a soft robotic manipulator bladder for the purposes of object manipulation and excavation of extreme environments.

Contributors

Agent

Created

Date Created
2016-05

152510-Thumbnail Image.png

Understanding plasticity and fracture in aluminum alloys and their composites by 3D X-ray synchrotron tomography and microdiffraction

Description

Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in

Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two distinct experimental studies were performed to further the understanding of fatigue damage mechanisms in aluminum alloys and their composites, specifically fracture and plasticity. Fatigue resistance of metal matrix composites (MMCs) depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this work was to obtain a fundamental understanding of fatigue crack growth behavior in SiC particle-reinforced 2080 Al alloy composites. In situ X-ray synchrotron tomography was performed on two samples at low (R=0.1) and at high (R=0.6) R-ratios. The resulting reconstructed images were used to obtain three-dimensional (3D) rendering of the particles and fatigue crack. Behaviors of the particles and crack, as well as their interaction, were analyzed and quantified. Four-dimensional (4D) visual representations were constructed to aid in the overall understanding of damage evolution. During fatigue crack growth in ductile materials, a plastic zone is created in the region surrounding the crack tip. Knowledge of the plastic zone is important for the understanding of fatigue crack formation as well as subsequent growth behavior. The goal of this work was to quantify the 3D size and shape of the plastic zone in 7075 Al alloys. X-ray synchrotron tomography and Laue microdiffraction were used to non-destructively characterize the volume surrounding a fatigue crack tip. The precise 3D crack profile was segmented from the reconstructed tomography data. Depth-resolved Laue patterns were obtained using differential-aperture X-ray structural microscopy (DAXM), from which peak-broadening characteristics were quantified. Plasticity, as determined by the broadening of diffracted peaks, was mapped in 3D. Two-dimensional (2D) maps of plasticity were directly compared to the corresponding tomography slices. A 3D representation of the plastic zone surrounding the fatigue crack was generated by superimposing the mapped plasticity on the 3D crack profile.

Contributors

Agent

Created

Date Created
2014

153180-Thumbnail Image.png

Fracture of nanoporous gold

Description

This research examines several critical aspects of the so-called "film induced cleavage" model of stress corrosion cracking using silver-gold alloys as the parent-phase material. The model hypothesizes that the corrosion generates a brittle nanoporous film, which subsequently fractures forming a

This research examines several critical aspects of the so-called "film induced cleavage" model of stress corrosion cracking using silver-gold alloys as the parent-phase material. The model hypothesizes that the corrosion generates a brittle nanoporous film, which subsequently fractures forming a high-speed crack that is injected into the uncorroded parent-phase alloy. This high speed crack owing to its kinetic energy can penetrate beyond the corroded layer into the parent phase and thus effectively reducing strength of the parent phase. Silver-gold alloys provide an ideal system to study this effect, as hydrogen effect can be ruled out on thermodynamic basis. During corrosion of the silver-gold alloy, the less noble metal i.e. silver is removed from the system leaving behind a nanoporous gold (NPG) layer. In the case of polycrystalline material, this corrosion process proceeds deeper along the grain boundary than the matrix grain. All of the cracks with apparent penetration beyond the corroded (dealloyed) layer are intergranular. Our aim was to study the crack penetration depth along the grain boundary to ascertain whether the penetration occurs past the grain-boundary dealloyed depth. EDS and imaging in high-resolution aberration corrected scanning transmission electron microscope (STEM) and atom probe tomography (APT) have been used to evaluate the grain boundary corrosion depth.

The mechanical properties of monolithic NPG are also studied. The motivation behind this is two-fold. The crack injection depth depends on the speed of the crack formed in the nanoporous layer, which in turn depends on the mechanical properties of the NPG. Also NPG has potential applications in actuation, sensing and catalysis. The measured value of the Young's modulus of NPG with 40 nm ligament size and 28% density was ~ 2.5 GPa and the Poisson's ratio was ~ 0.20. The fracture stress was observed to be ~ 11-13 MPa. There was no significant change observed between these mechanical properties on oxidation of NPG at 1.4 V. The fracture toughness value for the NPG was ~ 10 J/m2. Also dynamic fracture tests showed that the NPG is capable of supporting crack velocities ~ 100 - 180 m/s.

Contributors

Agent

Created

Date Created
2014

153182-Thumbnail Image.png

Role of impurities on deformation of HCP crystal: a multiscale approach

Description

Commercially pure (CP) and extra low interstitial (ELI) grade Ti-alloys present excellent corrosion resistance, lightweight, and formability making them attractive materials for expanded use in transportation and medical applications. However, the strength and toughness of CP titanium are affected by

Commercially pure (CP) and extra low interstitial (ELI) grade Ti-alloys present excellent corrosion resistance, lightweight, and formability making them attractive materials for expanded use in transportation and medical applications. However, the strength and toughness of CP titanium are affected by relatively small variations in their impurity/solute content (IC), e.g., O, Al, and V. This increase in strength is due to the fact that the solute either increases the critical stress required for the prismatic slip systems ({10-10}<1-210>) or activates another slip system ((0001)<11-20>, {10-11}<11-20>). In particular, solute additions such as O can effectively strengthen the alloy but with an attendant loss in ductility by changing the behavior from wavy (cross slip) to planar nature. In order to understand the underlying behavior of strengthening by solutes, it is important to understand the atomic scale mechanism. This dissertation aims to address this knowledge gap through a synergistic combination of density functional theory (DFT) and molecular dynamics. Further, due to the long-range strain fields of the dislocations and the periodicity of the DFT simulation cells, it is difficult to apply ab initio simulations to study the dislocation core structure. To alleviate this issue we developed a multiscale quantum mechanics/molecular mechanics approach (QM/MM) to study the dislocation core. We use the developed QM/MM method to study the pipe diffusion along a prismatic edge dislocation core. Complementary to the atomistic simulations, the Semi-discrete Variational Peierls-Nabarro model (SVPN) was also used to analyze the dislocation core structure and mobility. The chemical interaction between the solute/impurity and the dislocation core is captured by the so-called generalized stacking fault energy (GSFE) surface which was determined from DFT-VASP calculations. By taking the chemical interaction into consideration the SVPN model can predict the dislocation core structure and mobility in the presence and absence of the solute/impurity and thus reveal the effect of impurity/solute on the softening/hardening behavior in alpha-Ti. Finally, to study the interaction of the dislocation core with other planar defects such as grain boundaries (GB), we develop an automated method to theoretically generate GBs in HCP type materials.

Contributors

Agent

Created

Date Created
2014

153941-Thumbnail Image.png

Role of defects interactions with embrittlement species in iron: a multiscale perspective

Description

Hydrogen embrittlement (HE) is a phenomenon that affects both the physical and chemical properties of several intrinsically ductile metals. Consequently, understanding the mechanisms behind HE has been of particular interest in both experimental and modeling research. Discrepancies between experimental observations

Hydrogen embrittlement (HE) is a phenomenon that affects both the physical and chemical properties of several intrinsically ductile metals. Consequently, understanding the mechanisms behind HE has been of particular interest in both experimental and modeling research. Discrepancies between experimental observations and modeling results have led to various proposals for HE mechanisms. Therefore, to gain insights into HE mechanisms in iron, this dissertation aims to investigate several key issues involving HE such as: a) the incipient crack tip events; b) the cohesive strength of grain boundaries (GBs); c) the dislocation-GB interactions and d) the dislocation mobility.

The crack tip, which presents a preferential trap site for hydrogen segregation, was examined using atomistic methods and the continuum based Rice-Thompson criterion as sufficient concentration of hydrogen can alter the crack tip deformation mechanism. Results suggest that there is a plausible co-existence of the adsorption induced dislocation emission and hydrogen enhanced decohesion mechanisms. In the case of GB-hydrogen interaction, we observed that the segregation of hydrogen along the interface leads to a reduction in cohesive strength resulting in intergranular failure. A methodology was further developed to quantify the role of the GB structure on this behavior.

GBs play a fundamental role in determining the strengthening mechanisms acting as an impediment to the dislocation motion; however, the presence of an unsurmountable barrier for a dislocation can generate slip localization that could further lead to intergranular crack initiation. It was found that the presence of hydrogen increases the strain energy stored within the GB which could lead to a transition in failure mode. Finally, in the case of body centered cubic metals, understanding the complex screw dislocation motion is critical to the development of an accurate continuum description of the plastic behavior. Further, the presence of hydrogen has been shown to drastically alter the plastic deformation, but the precise role of hydrogen is still unclear. Thus, the role of hydrogen on the dislocation mobility was examined using density functional theory and atomistic simulations. Overall, this dissertation provides a novel atomic-scale understanding of the HE mechanism and development of multiscale tools for future endeavors.

Contributors

Agent

Created

Date Created
2015

153841-Thumbnail Image.png

A novel nonlocal lattice particle framework for modeling of solids

Description

Fracture phenomena have been extensively studied in the last several decades. Continuum mechanics-based approaches, such as finite element methods and extended finite element methods, are widely used for fracture simulation. One well-known issue of these approaches is the stress singularity

Fracture phenomena have been extensively studied in the last several decades. Continuum mechanics-based approaches, such as finite element methods and extended finite element methods, are widely used for fracture simulation. One well-known issue of these approaches is the stress singularity resulted from the spatial discontinuity at the crack tip/front. The requirement of guiding criteria for various cracking behaviors, such as initiation, propagation, and branching, also poses some challenges. Comparing to the continuum based formulation, the discrete approaches, such as lattice spring method, discrete element method, and peridynamics, have certain advantages when modeling various fracture problems due to their intrinsic characteristics in modeling discontinuities.

A novel, alternative, and systematic framework based on a nonlocal lattice particle model is proposed in this study. The uniqueness of the proposed model is the inclusion of both pair-wise local and multi-body nonlocal potentials in the formulation. First, the basic ideas of the proposed framework for 2D isotropic solid are presented. Derivations for triangular and square lattice structure are discussed in detail. Both mechanical deformation and fracture process are simulated and model verification and validation are performed with existing analytical solutions and experimental observations. Following this, the extension to general 3D isotropic solids based on the proposed local and nonlocal potentials is given. Three cubic lattice structures are discussed in detail. Failure predictions using the 3D simulation are compared with experimental testing results and very good agreement is observed. Next, a lattice rotation scheme is proposed to account for the material orientation in modeling anisotropic solids. The consistency and difference compared to the classical material tangent stiffness transformation method are discussed in detail. The implicit and explicit solution methods for the proposed lattice particle model are also discussed. Finally, some conclusions and discussions based on the current study are drawn at the end.

Contributors

Agent

Created

Date Created
2015

151771-Thumbnail Image.png

Probabilistic fatigue damage localization at unknown temperatures using guided wave methods

Description

This research examines the current challenges of using Lamb wave interrogation methods to localize fatigue crack damage in a complex metallic structural component subjected to unknown temperatures. The goal of this work is to improve damage localization results for a

This research examines the current challenges of using Lamb wave interrogation methods to localize fatigue crack damage in a complex metallic structural component subjected to unknown temperatures. The goal of this work is to improve damage localization results for a structural component interrogated at an unknown temperature, by developing a probabilistic and reference-free framework for estimating Lamb wave velocities and the damage location. The methodology for damage localization at unknown temperatures includes the following key elements: i) a model that can describe the change in Lamb wave velocities with temperature; ii) the extension of an advanced time-frequency based signal processing technique for enhanced time-of-flight feature extraction from a dispersive signal; iii) the development of a Bayesian damage localization framework incorporating data association and sensor fusion. The technique requires no additional transducers to be installed on a structure, and allows for the estimation of both the temperature and the wave velocity in the component. Additionally, the framework of the algorithm allows it to function completely in an unsupervised manner by probabilistically accounting for all measurement origin uncertainty. The novel algorithm was experimentally validated using an aluminum lug joint with a growing fatigue crack. The lug joint was interrogated using piezoelectric transducers at multiple fatigue crack lengths, and at temperatures between 20°C and 80°C. The results showed that the algorithm could accurately predict the temperature and wave speed of the lug joint. The localization results for the fatigue damage were found to correlate well with the true locations at long crack lengths, but loss of accuracy was observed in localizing small cracks due to time-of-flight measurement errors. To validate the algorithm across a wider range of temperatures the electromechanically coupled LISA/SIM model was used to simulate the effects of temperatures. The numerical results showed that this approach would be capable of experimentally estimating the temperature and velocity in the lug joint for temperatures from -60°C to 150°C. The velocity estimation algorithm was found to significantly increase the accuracy of localization at temperatures above 120°C when error due to incorrect velocity selection begins to outweigh the error due to time-of-flight measurements.

Contributors

Agent

Created

Date Created
2013

151523-Thumbnail Image.png

3D modeling of incipient spall damage in shocked FCC multicrystals

Description

Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in

Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and to formulate continuum models that account for the variability of the damage process due to microstructural heterogeneity. The length scale of damage with respect to that of the surrounding microstructure has proven to be a key aspect in determining sites of failure initiation. Correlations have been found between the damage sites and the surrounding microstructure to determine the preferred sites of spall damage, since it tends to localize at and around the regions of intrinsic defects such as grain boundaries and triple points. However, considerable amount of work still has to be done in this regard to determine the physics driving the damage at these intrinsic weak sites in the microstructure. The main focus of this research work is to understand the physical mechanisms behind the damage localization at these preferred sites. A crystal plasticity constitutive model is implemented with different damage criteria to study the effects of stress concentration and strain localization at the grain boundaries. A cohesive zone modeling technique is used to include the intrinsic strength of the grain boundaries in the simulations. The constitutive model is verified using single elements tests, calibrated using single crystal impact experiments and validated using bicrystal and multicrystal impact experiments. The results indicate that strain localization is the predominant driving force for damage initiation and evolution. The microstructural effects on theses damage sites are studied to attribute the extent of damage to microstructural features such as grain orientation, misorientation, Taylor factor and the grain boundary planes. The finite element simulations show good correlation with the experimental results and can be used as the preliminary step in developing accurate probabilistic models for damage nucleation.

Contributors

Agent

Created

Date Created
2013