Matching Items (42)
Filtering by

Clear all filters

151787-Thumbnail Image.png
Description
Electromyogram (EMG)-based control interfaces are increasingly used in robot teleoperation, prosthetic devices control and also in controlling robotic exoskeletons. Over the last two decades researchers have come up with a plethora of decoding functions to map myoelectric signals to robot motions. However, this requires a lot of training and validation

Electromyogram (EMG)-based control interfaces are increasingly used in robot teleoperation, prosthetic devices control and also in controlling robotic exoskeletons. Over the last two decades researchers have come up with a plethora of decoding functions to map myoelectric signals to robot motions. However, this requires a lot of training and validation data sets, while the parameters of the decoding function are specific for each subject. In this thesis we propose a new methodology that doesn't require training and is not user-specific. The main idea is to supplement the decoding functional error with the human ability to learn inverse model of an arbitrary mapping function. We have shown that the subjects gradually learned the control strategy and their learning rates improved. We also worked on identifying an optimized control scheme that would be even more effective and easy to learn for the subjects. Optimization was done by taking into account that muscles act in synergies while performing a motion task. The low-dimensional representation of the neural activity was used to control a two-dimensional task. Results showed that in the case of reduced dimensionality mapping, the subjects were able to learn to control the device in a slower pace, however they were able to reach and retain the same level of controllability. To summarize, we were able to build an EMG-based controller for robot devices that would work for any subject, without any training or decoding function, suggesting human-embedded controllers for robotic devices.
ContributorsAntuvan, Chris Wilson (Author) / Artemiadis, Panagiotis (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
152536-Thumbnail Image.png
Description
As robotic systems are used in increasingly diverse applications, the interaction of humans and robots has become an important area of research. In many of the applications of physical human robot interaction (pHRI), the robot and the human can be seen as cooperating to complete a task with some object

As robotic systems are used in increasingly diverse applications, the interaction of humans and robots has become an important area of research. In many of the applications of physical human robot interaction (pHRI), the robot and the human can be seen as cooperating to complete a task with some object of interest. Often these applications are in unstructured environments where many paths can accomplish the goal. This creates a need for the ability to communicate a preferred direction of motion between both participants in order to move in coordinated way. This communication method should be bidirectional to be able to fully utilize both the robot and human capabilities. Moreover, often in cooperative tasks between two humans, one human will operate as the leader of the task and the other as the follower. These roles may switch during the task as needed. The need for communication extends into this area of leader-follower switching. Furthermore, not only is there a need to communicate the desire to switch roles but also to control this switching process. Impedance control has been used as a way of dealing with some of the complexities of pHRI. For this investigation, it was examined if impedance control can be utilized as a way of communicating a preferred direction between humans and robots. The first set of experiments tested to see if a human could detect a preferred direction of a robot by grasping and moving an object coupled to the robot. The second set tested the reverse case if the robot could detect the preferred direction of the human. The ability to detect the preferred direction was shown to be up to 99% effective. Using these results, a control method to allow a human and robot to switch leader and follower roles during a cooperative task was implemented and tested. This method proved successful 84% of the time. This control method was refined using adaptive control resulting in lower interaction forces and a success rate of 95%.
ContributorsWhitsell, Bryan (Author) / Artemiadis, Panagiotis (Thesis advisor) / Santello, Marco (Committee member) / Santos, Veronica (Committee member) / Arizona State University (Publisher)
Created2014
152349-Thumbnail Image.png
Description
As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective of this thesis is to solve the inverse kinematics problem

As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective of this thesis is to solve the inverse kinematics problem of redundant robot arms that results to anthropomorphic configurations. The swivel angle of the elbow was used as a human arm motion parameter for the robot arm to mimic. The swivel angle is defined as the rotation angle of the plane defined by the upper and lower arm around a virtual axis that connects the shoulder and wrist joints. Using kinematic data recorded from human subjects during every-day life tasks, the linear sensorimotor transformation model was validated and used to estimate the swivel angle, given the desired end-effector position. Defining the desired swivel angle simplifies the kinematic redundancy of the robot arm. The proposed method was tested with an anthropomorphic redundant robot arm and the computed motion profiles were compared to the ones of the human subjects. This thesis shows that the method computes anthropomorphic configurations for the robot arm, even if the robot arm has different link lengths than the human arm and starts its motion at random configurations.
ContributorsWang, Yuting (Author) / Artemiadis, Panagiotis (Thesis advisor) / Mignolet, Marc (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
153533-Thumbnail Image.png
Description
As the robotic industry becomes increasingly present in some of the more extreme environments such as the battle field, disaster sites or extraplanetary exploration, it will be necessary to provide locomotive niche strategies that are optimal to each terrain. The hopping gait has been well studied in robotics and

As the robotic industry becomes increasingly present in some of the more extreme environments such as the battle field, disaster sites or extraplanetary exploration, it will be necessary to provide locomotive niche strategies that are optimal to each terrain. The hopping gait has been well studied in robotics and proven to be a potential method to fit some of these niche areas. There have been some difficulties in producing terrain following controllers that maintain robust, steady state, which are disturbance resistant.

The following thesis will discuss a controller which has shown the ability to produce these desired properties. A phase angle oscillator controller is shown to work remarkably well, both in simulation and with a one degree of freedom robotic test stand.

Work was also done with an experimental quadruped with less successful results, but which did show potential for stability. Additional work is suggested for the quadruped.
ContributorsNew, Philip Wesley (Author) / Sugar, Thomas G. (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Redkar, Sangram (Committee member) / Arizona State University (Publisher)
Created2015
153189-Thumbnail Image.png
Description
Wearable robots including exoskeletons, powered prosthetics, and powered orthotics must add energy to the person at an appropriate time to enhance, augment, or supplement human performance. Adding energy while not being in sync with the user can dramatically hurt performance making it necessary to have correct timing with the user.

Wearable robots including exoskeletons, powered prosthetics, and powered orthotics must add energy to the person at an appropriate time to enhance, augment, or supplement human performance. Adding energy while not being in sync with the user can dramatically hurt performance making it necessary to have correct timing with the user. Many human tasks such as walking, running, and hopping are repeating or cyclic tasks and a robot can add energy in sync with the repeating pattern for assistance. A method has been developed to add energy at the appropriate time to the repeating limit cycle based on a phase oscillator. The phase oscillator eliminates time from the forcing function which is based purely on the motion of the user. This approach has been simulated, implemented and tested in a robotic backpack which facilitates carrying heavy loads. The device oscillates the load of the backpack, based on the motion of the user, in order to add energy at the correct time and thus reduce the amount of energy required for walking with a heavy load. Models were developed in Working Model 2-D, a dynamics simulation software, in conjunction with MATLAB to verify theory and test control methods. The control system developed is robust and has successfully operated on a range of different users, each with their own different and distinct gait. The results of experimental testing validated the corresponding models.
ContributorsWheeler, Chase (Author) / Sugar, Thomas G. (Thesis advisor) / Redkar, Sangram (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2014
150756-Thumbnail Image.png
Description
Energy efficient design and management of data centers has seen considerable interest in the recent years owing to its potential to reduce the overall energy consumption and thereby the costs associated with it. Therefore, it is of utmost importance that new methods for improved physical design of data centers, resource

Energy efficient design and management of data centers has seen considerable interest in the recent years owing to its potential to reduce the overall energy consumption and thereby the costs associated with it. Therefore, it is of utmost importance that new methods for improved physical design of data centers, resource management schemes for efficient workload distribution and sustainable operation for improving the energy efficiency, be developed and tested before implementation on an actual data center. The BlueTool project, provides such a state-of-the-art platform, both software and hardware, to design and analyze energy efficiency of data centers. The software platform, namely GDCSim uses cyber-physical approach to study the physical behavior of the data center in response to the management decisions by taking into account the heat recirculation patterns in the data center room. Such an approach yields best possible energy savings owing to the characterization of cyber-physical interactions and the ability of the resource management to take decisions based on physical behavior of data centers. The GDCSim mainly uses two Computational Fluid Dynamics (CFD) based cyber-physical models namely, Heat Recirculation Matrix (HRM) and Transient Heat Distribution Model (THDM) for thermal predictions based on different management schemes. They are generated using a model generator namely BlueSim. To ensure the accuracy of the thermal predictions using the GDCSim, the models, HRM and THDM and the model generator, BlueSim need to be validated experimentally. For this purpose, the hardware platform of the BlueTool project, namely the BlueCenter, a mini data center, can be used. As a part of this thesis, the HRM and THDM were generated using the BlueSim and experimentally validated using the BlueCenter. An average error of 4.08% was observed for BlueSim, 5.84% for HRM and 4.24% for THDM. Further, a high initial error was observed for transient thermal prediction, which is due to the inability of BlueSim to account for the heat retained by server components.
ContributorsGilbert, Rose Robin (Author) / Gupta, Sandeep K.S (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2012
155910-Thumbnail Image.png
Description
The interaction between humans and robots has become an important area of research as the diversity of robotic applications has grown. The cooperation of a human and robot to achieve a goal is an important area within the physical human-robot interaction (pHRI) field. The expansion of this field is toward

The interaction between humans and robots has become an important area of research as the diversity of robotic applications has grown. The cooperation of a human and robot to achieve a goal is an important area within the physical human-robot interaction (pHRI) field. The expansion of this field is toward moving robotics into applications in unstructured environments. When humans cooperate with each other, often there are leader and follower roles. These roles may change during the task. This creates a need for the robotic system to be able to exchange roles with the human during a cooperative task. The unstructured nature of the new applications in the field creates a need for robotic systems to be able to interact in six degrees of freedom (DOF). Moreover, in these unstructured environments, the robotic system will have incomplete information. This means that it will sometimes perform an incorrect action and control methods need to be able to correct for this. However, the most compelling applications for robotics are where they have capabilities that the human does not, which also creates the need for robotic systems to be able to correct human action when it detects an error. Activity in the brain precedes human action. Utilizing this activity in the brain can classify the type of interaction desired by the human. For this dissertation, the cooperation between humans and robots is improved in two main areas. First, the ability for electroencephalogram (EEG) to determine the desired cooperation role with a human is demonstrated with a correct classification rate of 65%. Second, a robotic controller is developed to allow the human and robot to cooperate in six DOF with asymmetric role exchange. This system allowed human-robot cooperation to perform a cooperative task at 100% correct rate. High, medium, and low levels of robotic automation are shown to affect performance, with the human making the greatest numbers of errors when the robotic system has a medium level of automation.
ContributorsWhitsell, Bryan Douglas (Author) / Artemiadis, Panagiotis (Thesis advisor) / Santello, Marco (Committee member) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Polygerinos, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2017
157457-Thumbnail Image.png
Description
The construction industry is very mundane and tiring for workers without the assistance of machines. This challenge has changed the trend of construction industry tremendously by motivating the development of robots that can replace human workers. This thesis presents a computed torque controller that is designed to produce movements by

The construction industry is very mundane and tiring for workers without the assistance of machines. This challenge has changed the trend of construction industry tremendously by motivating the development of robots that can replace human workers. This thesis presents a computed torque controller that is designed to produce movements by a small-scale, 5 degree-of-freedom (DOF) robotic arm that are useful for construction operations, specifically bricklaying. A software framework for the robotic arm with motion and path planning features and different control capabilities has also been developed using the Robot Operating System (ROS).

First, a literature review of bricklaying construction activity and existing robots’ performance is discussed. After describing an overview of the required robot structure, a mathematical model is presented for the 5-DOF robotic arm. A model-based computed torque controller is designed for the nonlinear dynamic robotic arm, taking into consideration the dynamic and kinematic properties of the arm. For sustainable growth of this technology so that it is affordable to the masses, it is important that the energy consumption by the robot is optimized. In this thesis, the trajectory of the robotic arm is optimized using sequential quadratic programming. The results of the energy optimization procedure are also analyzed for different possible trajectories.

A construction testbed setup is simulated in the ROS platform to validate the designed controllers and optimized robot trajectories on different experimental scenarios. A commercially available 5-DOF robotic arm is modeled in the ROS simulators Gazebo and Rviz. The path and motion planning is performed using the Moveit-ROS interface and also implemented on a physical small-scale robotic arm. A Matlab-ROS framework for execution of different controllers on the physical robot is described. Finally, the results of the controller simulation and experiments are discussed in detail.
ContributorsGandhi, Sushrut (Author) / Berman, Spring (Thesis advisor) / Marvi, Hamidreza (Committee member) / Yong, Sze Zheng (Committee member) / Arizona State University (Publisher)
Created2019
157430-Thumbnail Image.png
Description
Basilisk lizards are often studied for their unique ability to run across the surface of

water. Due to the complicated fluid dynamics of this process, the forces applied on the

water’s surface cannot be measured using traditional methods. This thesis presents a

novel technique of measuring the forces using a fluid dynamic force

Basilisk lizards are often studied for their unique ability to run across the surface of

water. Due to the complicated fluid dynamics of this process, the forces applied on the

water’s surface cannot be measured using traditional methods. This thesis presents a

novel technique of measuring the forces using a fluid dynamic force platform (FDFP),

a light, rigid box immersed in water. This platform, along with a motion capture

system, can be used to characterize the kinematics and dynamics of a basilisk lizard

running on water. This could ultimately lead to robots that can run on water in a

similar manner.
ContributorsSweeney, Andrew Joseph (Author) / Marvi, Hamidreza (Thesis advisor) / Lentink, David (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2019
156724-Thumbnail Image.png
Description
The world population is aging. Age-related disorders such as stroke and spinal cord injury are increasing rapidly, and such patients often suffer from mobility impairment. Wearable robotic exoskeletons are developed that serve as rehabilitation devices for these patients. In this thesis, a knee exoskeleton design with higher torque output compared

The world population is aging. Age-related disorders such as stroke and spinal cord injury are increasing rapidly, and such patients often suffer from mobility impairment. Wearable robotic exoskeletons are developed that serve as rehabilitation devices for these patients. In this thesis, a knee exoskeleton design with higher torque output compared to the first version, is designed and fabricated.

A series elastic actuator is one of the many actuation mechanisms employed in exoskeletons. In this mechanism a torsion spring is used between the actuator and human joint. It serves as torque sensor and energy buffer, making it compact and

safe.

A version of knee exoskeleton was developed using the SEA mechanism. It uses worm gear and spur gear combination to amplify the assistive torque generated from the DC motor. It weighs 1.57 kg and provides a maximum assistive torque of 11.26 N·m. It can be used as a rehabilitation device for patients affected with knee joint impairment.

A new version of exoskeleton design is proposed as an improvement over the first version. It consists of components such as brushless DC motor and planetary gear that are selected to meet the design requirements and biomechanical considerations. All the other components such as bevel gear and torsion spring are selected to be compatible with the exoskeleton. The frame of the exoskeleton is modeled in SolidWorks to be modular and easy to assemble. It is fabricated using sheet metal aluminum. It is designed to provide a maximum assistive torque of 23 N·m, two times over the present exoskeleton. A simple brace is 3D printed, making it easy to wear and use. It weighs 2.4 kg.

The exoskeleton is equipped with encoders that are used to measure spring deflection and motor angle. They act as sensors for precise control of the exoskeleton.

An impedance-based control is implemented using NI MyRIO, a FPGA based controller. The motor is controlled using a motor driver and powered using an external battery source. The bench tests and walking tests are presented. The new version of exoskeleton is compared with first version and state of the art devices.
ContributorsJhawar, Vaibhav (Author) / Zhang, Wenlong (Thesis advisor) / Sugar, Thomas G. (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2018