Matching Items (14)
Filtering by

Clear all filters

151321-Thumbnail Image.png
Description
This thesis concerns the role of geometric imperfections on assemblies in which the location of a target part is dependent on supports at two features. In some applications, such as a turbo-machine rotor that is supported by a series of parts at each bearing, it is the interference or clearance

This thesis concerns the role of geometric imperfections on assemblies in which the location of a target part is dependent on supports at two features. In some applications, such as a turbo-machine rotor that is supported by a series of parts at each bearing, it is the interference or clearance at a functional target feature, such as at the blades that must be controlled. The first part of this thesis relates the limits of location for the target part to geometric imperfections of other parts when stacked-up in parallel paths. In this section parts are considered to be rigid (non-deformable). By understanding how much of variation from the supporting parts contribute to variations of the target feature, a designer can better utilize the tolerance budget when assigning values to individual tolerances. In this work, the T-Map®, a spatial math model is used to model the tolerance accumulation in parallel assemblies. In other applications where parts are flexible, deformations are induced when parts in parallel are clamped together during assembly. Presuming that perfectly manufactured parts have been designed to fit perfectly together and produce zero deformations, the clamping-induced deformations result entirely from the imperfect geometry that is produced during manufacture. The magnitudes and types of these deformations are a function of part dimensions and material stiffnesses, and they are limited by design tolerances that control manufacturing variations. These manufacturing variations, if uncontrolled, may produce high enough stresses when the parts are assembled that premature failure can occur before the design life. The last part of the thesis relates the limits on the largest von Mises stress in one part to functional tolerance limits that must be set at the beginning of a tolerance analysis of parts in such an assembly.
ContributorsJaishankar, Lupin Niranjan (Author) / Davidson, Joseph K. (Thesis advisor) / Shah, Jami J. (Committee member) / Mignolet, Marc P (Committee member) / Arizona State University (Publisher)
Created2012
151510-Thumbnail Image.png
Description
Tolerances on line profiles are used to control cross-sectional shapes of parts, such as turbine blades. A full life cycle for many mechanical devices depends (i) on a wise assignment of tolerances during design and (ii) on careful quality control of the manufacturing process to ensure adherence to the specified

Tolerances on line profiles are used to control cross-sectional shapes of parts, such as turbine blades. A full life cycle for many mechanical devices depends (i) on a wise assignment of tolerances during design and (ii) on careful quality control of the manufacturing process to ensure adherence to the specified tolerances. This thesis describes a new method for quality control of a manufacturing process by improving the method used to convert measured points on a part to a geometric entity that can be compared directly with tolerance specifications. The focus of this paper is the development of a new computational method for obtaining the least-squares fit of a set of points that have been measured with a coordinate measurement machine along a line-profile. The pseudo-inverse of a rectangular matrix is used to convert the measured points to the least-squares fit of the profile. Numerical examples are included for convex and concave line-profiles, that are formed from line- and circular arc-segments.
ContributorsSavaliya, Samir (Author) / Davidson, Joseph K. (Thesis advisor) / Shah, Jami J. (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
152600-Thumbnail Image.png
Description
This thesis contains the applications of the ASU mathematical model (Tolerance Maps, T-Maps) to the construction of T-Maps for patterns of line profiles. Previously, Tolerance Maps were developed for patterns of features such as holes, pins, slots and tabs to control their position. The T-Maps that are developed in this

This thesis contains the applications of the ASU mathematical model (Tolerance Maps, T-Maps) to the construction of T-Maps for patterns of line profiles. Previously, Tolerance Maps were developed for patterns of features such as holes, pins, slots and tabs to control their position. The T-Maps that are developed in this thesis are fully compatible with the ASME Y14.5 Standard. A pattern of square profiles, both linear and 2D, is used throughout this thesis to illustrate the idea of constructing the T-Maps for line profiles. The Standard defines two ways of tolerancing a pattern of profiles - Composite Tolerancing and Multiple Single Segment Tolerancing. Further, in the composite tolerancing scheme, there are two different ways to control the entire pattern - repeating a single datum or two datums in the secondary datum reference frame. T-Maps are constructed for all the different specifications. The Standard also describes a way to control the coplanarity of discontinuous surfaces using a profile tolerance and T-Maps have been developed. Since verification of manufactured parts relative to the tolerance specifications is crucial, a least squares fit approach, which was developed earlier for line profiles, has been extended to patterns of line profiles. For a pattern, two tolerances are specified, and the manufactured profile needs to lie within the tolerance zones established by both of these tolerances. An i-Map representation of the manufactured variation, located within the T-Map is also presented in this thesis.
ContributorsRao, Shyam Subramanya (Author) / Davidson, Joseph K. (Thesis advisor) / Arizona State University (Publisher)
Created2014
152562-Thumbnail Image.png
Description
Conformance of a manufactured feature to the applied geometric tolerances is done by analyzing the point cloud that is measured on the feature. To that end, a geometric feature is fitted to the point cloud and the results are assessed to see whether the fitted feature lies within the specified

Conformance of a manufactured feature to the applied geometric tolerances is done by analyzing the point cloud that is measured on the feature. To that end, a geometric feature is fitted to the point cloud and the results are assessed to see whether the fitted feature lies within the specified tolerance limits or not. Coordinate Measuring Machines (CMMs) use feature fitting algorithms that incorporate least square estimates as a basis for obtaining minimum, maximum, and zone fits. However, a comprehensive set of algorithms addressing the fitting procedure (all datums, targets) for every tolerance class is not available. Therefore, a Library of algorithms is developed to aid the process of feature fitting, and tolerance verification. This paper addresses linear, planar, circular, and cylindrical features only. This set of algorithms described conforms to the international Standards for GD&T.; In order to reduce the number of points to be analyzed, and to identify the possible candidate points for linear, circular and planar features, 2D and 3D convex hulls are used. For minimum, maximum, and Chebyshev cylinders, geometric search algorithms are used. Algorithms are divided into three major categories: least square, unconstrained, and constrained fits. Primary datums require one sided unconstrained fits for their verification. Secondary datums require one sided constrained fits for their verification. For size and other tolerance verifications, we require both unconstrained and constrained fits
ContributorsMohan, Prashant (Author) / Shah, Jami (Thesis advisor) / Davidson, Joseph K. (Committee member) / Farin, Gerald (Committee member) / Arizona State University (Publisher)
Created2014
152921-Thumbnail Image.png
Description
Small metallic parts of size less than 1mm, with features measured in tens of microns, with tolerances as small as 0.1 micron are in demand for the research in many fields such as electronics, optics, and biomedical engineering. Because of various drawbacks with non-mechanical micromanufacturing processes, micromilling has shown itself

Small metallic parts of size less than 1mm, with features measured in tens of microns, with tolerances as small as 0.1 micron are in demand for the research in many fields such as electronics, optics, and biomedical engineering. Because of various drawbacks with non-mechanical micromanufacturing processes, micromilling has shown itself to be an attractive alternative manufacturing method. Micromilling is a microscale manufacturing process that can be used to produce a wide range of small parts, including those that have complex 3-dimensional contours. Although the micromilling process is superficially similar to conventional-scale milling, the physical processes of micromilling are unique due to the scale effects. These scale effects occur due to unequal scaling of the parameters from the macroscale to the microscale milling. One key example of scale effects in micromilling process is a geometrical source of error known as chord error. The chord error limits the feedrate to a reduced value to produce the features within machining tolerances. In this research, it is hypothesized that the increase of chord error in micromilling can be alleviated by intelligent modification of the kinematic arrangement of the micromilling machine. Currently, all 3-axis micromilling machines are constructed with a Cartesian kinematic arrangement with three perpendicular linear axes. In this research, the cylindrical kinematic arrangement is introduced, and an analytical expression for the chord error for this arrangement is derived. The numerical simulations are performed to evaluate the chord errors for the cylindrical kinematic arrangement. It is found that cylindrical kinematic arrangement gives reduced chord error for some types of the desired toolpaths. Then, the kinematic redundancy is introduced to design a novel kinematic arrangement. Several desired toolpaths have been numerically simulated to evaluate the chord error for kinematically redundant arrangement. It is concluded that this arrangement gives up to 5 times reduced error for all the desired toolpaths considered, and allows significant gains in allowable feedrates.
ContributorsChukewad, Yogesh Madhavrao (Author) / SODEMANN, ANGELA A (Thesis advisor) / Davidson, Joseph K. (Thesis advisor) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2014
153035-Thumbnail Image.png
Description
Dimensional Metrology is the branch of science that determines length, angular, and geometric relationships within manufactured parts and compares them with required tolerances. The measurements can be made using either manual methods or sampled coordinate metrology (Coordinate measuring machines). Manual measurement methods have been in practice for a long time

Dimensional Metrology is the branch of science that determines length, angular, and geometric relationships within manufactured parts and compares them with required tolerances. The measurements can be made using either manual methods or sampled coordinate metrology (Coordinate measuring machines). Manual measurement methods have been in practice for a long time and are well accepted in the industry, but are slow for the present day manufacturing. On the other hand CMMs are relatively fast, but these methods are not well established yet. The major problem that needs to be addressed is the type of feature fitting algorithm used for evaluating tolerances. In a CMM the use of different feature fitting algorithms on a feature gives different values, and there is no standard that describes the type of feature fitting algorithm to be used for a specific tolerance. Our research is focused on identifying the feature fitting algorithm that is best used for each type of tolerance. Each algorithm is identified as the one to best represent the interpretation of geometric control as defined by the ASME Y14.5 standard and on the manual methods used for the measurement of a specific tolerance type. Using these algorithms normative procedures for CMMs are proposed for verifying tolerances. The proposed normative procedures are implemented as software. Then the procedures are verified by comparing the results from software with that of manual measurements.

To aid this research a library of feature fitting algorithms is developed in parallel. The library consists of least squares, Chebyshev and one sided fits applied on the features of line, plane, circle and cylinder. The proposed normative procedures are useful for evaluating tolerances in CMMs. The results evaluated will be in accordance to the standard. The ambiguity in choosing the algorithms is prevented. The software developed can be used in quality control for inspection purposes.
ContributorsVemulapalli, Prabath (Author) / Shah, Jami J. (Thesis advisor) / Davidson, Joseph K. (Committee member) / Takahashi, Timothy (Committee member) / Arizona State University (Publisher)
Created2014
153188-Thumbnail Image.png
Description
Conceptual design stage plays a critical role in product development. However, few systematic methods and tools exist to support conceptual design. The long term aim of this project is to develop a tool for facilitating holistic ideation for conceptual design. This research is a continuation of past efforts in ASU

Conceptual design stage plays a critical role in product development. However, few systematic methods and tools exist to support conceptual design. The long term aim of this project is to develop a tool for facilitating holistic ideation for conceptual design. This research is a continuation of past efforts in ASU Design Automation Lab. In past research, an interactive software test bed (Holistic Ideation Tool - version 1) was developed to explore logical ideation methods. Ideation states were identified and ideation strategies were developed to overcome common ideation blocks. The next version (version 2) of the holistic ideation tool added Cascading Evolutionary Morphological Charts (CEMC) framework and intuitive ideation strategies (reframing, restructuring, random connection, and forced connection).

Despite these remarkable contributions, there exist shortcomings in the previous versions (version 1 and version 2) of the holistic ideation tool. First, there is a need to add new ideation methods to the holistic ideation tool. Second, the organizational framework provided by previous versions needs to be improved, and a holistic approach needs to be devised, instead of separate logical or intuitive approaches. Therefore, the main objective of this thesis is to make the improvements and to resolve technical issues that are involved in their implementation.

Towards this objective, a new web based holistic ideation tool (version 3) has been created. The new tool adds and integrates Knowledge Bases of Mechanisms and Components Off-The-Shelf (COTS) into logical ideation methods. Additionally, an improved CEMC framework has been devised for organizing ideas efficiently. Furthermore, the usability of the tool has been improved by designing and implementing a new graphical user interface (GUI) which is more user friendly. It is hoped that these new features will lead to a platform for the designers to not only generate creative ideas but also effectively organize and store them in the conceptual design stage. By placing it on the web for public use, the Testbed has the potential to be used for research on the ideation process by effectively collecting large amounts of data from designers.
ContributorsNarsale, Sumit Sunil (Author) / Shah, Jami J. (Thesis advisor) / Davidson, Joseph K. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2014
150104-Thumbnail Image.png
Description
A full understanding of material behavior is important for the prediction of residual useful life of aerospace structures via computational modeling. In particular, the influence of rolling-induced anisotropy on fatigue properties has not been studied extensively and it is likely to have a meaningful effect. In this work, fatigue behavior

A full understanding of material behavior is important for the prediction of residual useful life of aerospace structures via computational modeling. In particular, the influence of rolling-induced anisotropy on fatigue properties has not been studied extensively and it is likely to have a meaningful effect. In this work, fatigue behavior of a wrought Al alloy (2024-T351) is studied using notched uniaxial samples with load axes along either the longitudinal or transverse direction, and center notched biaxial samples (cruciforms) with a uniaxial stress state of equivalent amplitude about the bore. Local composition and crystallography were quantified before testing using Energy Dispersive Spectroscopy and Electron Backscattering Diffraction. Interrupted fatigue testing at stresses close to yielding was performed on the samples to nucleate and propagate short cracks and nucleation sites were located and characterized using standard optical and Scanning Electron Microscopy. Results show that crack nucleation occurred due to fractured particles for longitudinal dogbone/cruciform samples; while transverse samples nucleated cracks by debonded and fractured particles. Change in crack nucleation mechanism is attributed to dimensional change of particles with respect to the material axes caused by global anisotropy. Crack nucleation from debonding reduced life till matrix fracture because debonded particles are sharper and generate matrix cracks sooner than their fractured counterparts. Longitudinal samples experienced multisite crack initiation because of reduced cross sectional areas of particles parallel to the loading direction. Conversely the favorable orientation of particles in transverse samples reduced instances of particle fracture eliminating multisite cracking and leading to increased fatigue life. Cyclic tests of cruciform samples showed that crack growth favors longitudinal and transverse directions with few instances of crack growth 45 degrees (diagonal) to the rolling direction. The diagonal crack growth is attributed to stronger influences of local anisotropy on crack nucleation. It was observed that majority of the time crack nucleation is governed by the mixed influences of global and local anisotropies. Measurements of crystal directions parallel to the load on main crack paths revealed directions clustered near the {110} planes and high index directions. This trend is attributed to environmental effects as a result of cyclic testing in air.
ContributorsMakaš, Admir (Author) / Peralta, Pedro D. (Thesis advisor) / Davidson, Joseph K. (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
153932-Thumbnail Image.png
Description
Design problem formulation is believed to influence creativity, yet it has received only modest attention in the research community. Past studies of problem formulation are scarce and often have small sample sizes. The main objective of this research is to understand how problem formulation affects creative outcome. Three research areas

Design problem formulation is believed to influence creativity, yet it has received only modest attention in the research community. Past studies of problem formulation are scarce and often have small sample sizes. The main objective of this research is to understand how problem formulation affects creative outcome. Three research areas are investigated: development of a model which facilitates capturing the differences among designers' problem formulation; representation and implication of those differences; the relation between problem formulation and creativity.

This dissertation proposes the Problem Map (P-maps) ontological framework. P-maps represent designers' problem formulation in terms of six groups of entities (requirement, use scenario, function, artifact, behavior, and issue). Entities have hierarchies within each group and links among groups. Variables extracted from P-maps characterize problem formulation.

Three experiments were conducted. The first experiment was to study the similarities and differences between novice and expert designers. Results show that experts use more abstraction than novices do and novices are more likely to add entities in a specific order. Experts also discover more issues.

The second experiment was to see how problem formulation relates to creativity. Ideation metrics were used to characterize creative outcome. Results include but are not limited to a positive correlation between adding more issues in an unorganized way with quantity and variety, more use scenarios and functions with novelty, more behaviors and conflicts identified with quality, and depth-first exploration with all ideation metrics. Fewer hierarchies in use scenarios lower novelty and fewer links to requirements and issues lower quality of ideas.

The third experiment was to see if problem formulation can predict creative outcome. Models based on one problem were used to predict the creativity of another. Predicted scores were compared to assessments of independent judges. Quality and novelty are predicted more accurately than variety, and quantity. Backward elimination improves model fit, though reduces prediction accuracy.

P-maps provide a theoretical framework for formalizing, tracing, and quantifying conceptual design strategies. Other potential applications are developing a test of problem formulation skill, tracking students' learning of formulation skills in a course, and reproducing other researchers’ observations about designer thinking.
ContributorsDinar, Mahmoud (Author) / Shah, Jami J. (Thesis advisor) / Langley, Pat (Committee member) / Davidson, Joseph K. (Committee member) / Lande, Micah (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2015
154869-Thumbnail Image.png
Description
There is very little in the way of prescriptive procedures to guide designers in tolerance specification. This shortcoming motivated the group at Design Automation Lab to automate tolerancing of mechanical assemblies. GD&T data generated by the Auto-Tolerancing software is semantically represented using a neutral Constraint Tolerance Feature (CTF) graph file

There is very little in the way of prescriptive procedures to guide designers in tolerance specification. This shortcoming motivated the group at Design Automation Lab to automate tolerancing of mechanical assemblies. GD&T data generated by the Auto-Tolerancing software is semantically represented using a neutral Constraint Tolerance Feature (CTF) graph file format that is consistent with the ASME Y14.5 standard and the ISO STEP Part 21 file. The primary objective of this research is to communicate GD&T information from the CTF file to a neutral machine readable format. The latest STEP AP 242 (ISO 10303-242) “Managed model based 3D engineering“ aims to support smart manufacturing by capturing semantic Product Manufacturing Information (PMI) within the 3D model and also helping with long-term archiving of the product information. In line with the recommended practices published by CAx Implementor Forum, this research discusses the implementation of CTF to AP 242 translator. The input geometry available in STEP AP 203 format is pre-processed using STEP-NC DLL and 3D InterOp. While the former is initially used to attach persistent IDs to the topological entities in STEP, the latter retains the IDs during translation to ACIS entities for consumption by other modules in the Auto-tolerancing module. The associativity of GD&T available in CTF file to the input geometry is through persistent IDs. C++ libraries used for the translation to STEP AP 242 is provided by StepTools Inc through the STEP-NC DLL. Finally, the output STEP file is tested using available AP 242 readers and shows full conformance with the STEP standard. Using the output AP 242 file, semantic GDT data can now be automatically consumed by downstream applications such as Computer Aided Process Planning (CAPP), Computer Aided Inspection (CAI), Computer Aided Tolerance Systems (CATS) and Coordinate Measuring Machines (CMM).
ContributorsVenkiteswaran, Adarsh (Author) / Shah, Jami J. (Thesis advisor) / Hardwick, Martin (Committee member) / Davidson, Joseph K. (Committee member) / Arizona State University (Publisher)
Created2016