Matching Items (502)
Filtering by

Clear all filters

161883-Thumbnail Image.png
Description
Realistic engineering, physical and biological systems are very complex in nature, and their response and performance are governed by multitude of interacting processes. In computational modeling of these systems, the interactive response is most often ignored, and simplifications are made to model one or a few relevant phenomena as opposed

Realistic engineering, physical and biological systems are very complex in nature, and their response and performance are governed by multitude of interacting processes. In computational modeling of these systems, the interactive response is most often ignored, and simplifications are made to model one or a few relevant phenomena as opposed to a complete set of interacting processes due to a complexity of integrative analysis. In this thesis, I will develop new high-order computational approaches that reduce the amount of simplifications and model the full response of a complex system by accounting for the interaction between different physical processes as required for an accurate description of the global system behavior. Specifically, I will develop multi-physics coupling techniques based on spectral-element methods for the simulations of such systems. I focus on three specific applications: fluid-structure interaction, conjugate heat transfer, and modeling of acoustic wave propagation in non-uniform media. Fluid-structure interaction illustrates a complex system between a fluid and a solid, where a movable and deformable structure is surrounded by fluid flow, and its deformation caused by fluid affects the fluid flow interactively. To simulate this system, two coupling schemes are developed: 1) iterative implicit coupling, and 2) explicit coupling based on Robin-Neumann boundary conditions. A comprehensive verification strategy of the developed methodology is presented, including a comparison with benchmark flow solutions, h-, p- and temporal refinement studies. Simulation of a turbulent flow in a channel interacting with a compliant wall is attempted as well. Another problem I consider is when a solid is stationary, but a heat transfer occurs on the fluid-solid interface. To model this problem, a conjugate heat transfer framework is introduced. Validation of the framework, as well as studies of an interior thermal environment in a building regulated by an HVAC system with an on/off control model with precooling and multi-zone precooling strategies are presented. The final part of this thesis is devoted to modeling an interaction of acoustic waves with the fluid flow. The development of a spectral-element methodology for solution of Lighthill’s equation, and its application to a problem of leak detection in water pipes is presented.
ContributorsXu, Yiqin (Author) / Peet, Yulia (Thesis advisor) / Huang, Huei-Ping (Committee member) / Herrmann, Marcus (Committee member) / Adrian, Ronald (Committee member) / Baer, Steven (Committee member) / Arizona State University (Publisher)
Created2021
161885-Thumbnail Image.png
Description
The desorption process is widely used in numerous fields such as drying, thermal energy storage, dehumidification, etc. but due to the long duration and low efficiency of the process, ultrasound has been widely used to enhance the desorption. There are a lot of studies carried out in this area but

The desorption process is widely used in numerous fields such as drying, thermal energy storage, dehumidification, etc. but due to the long duration and low efficiency of the process, ultrasound has been widely used to enhance the desorption. There are a lot of studies carried out in this area but due to the experimentation time and cost computational fluid dynamics (CFD) simulations provide an effective and cheaper way to studying the desorption process. This research aims to develop a CFD model using ANSYS Fluent for the desorption of water from zeolite-13X in the presence and absence of ultrasound as experimentally done by Daghooghi-Mobarakeh et al. The simulation results show very good agreement (error less than 1%) with the experimental results for the desorption process without ultrasound. It was found later that it is not possible to simulate the ultrasound-assisted desorption due to the computational burden imposed by the very small time step required. Hence, to study the effect of pressure induced by ultrasound the pressure term in the simulation is added/subtracted by the pressure induced by the ultrasound to determine its effects. There is no change in the desorption curve because the induced pressure is 975 Pa which is less than 1% of the fluid pressure which is equal to 101325 Pa. Also, the effects of thermal conductivity, surface diffusion and its activation energy are explored. The increase in thermal conductivity and surface diffusion enhances desorption while an increase in activation energy decreases desorption rate.
ContributorsBalakrishnamurthi, Sarvesh (Author) / Phelan, Patrick Dr (Thesis advisor) / Huang, Huei-Ping Dr (Committee member) / Calhoun, Ronald Dr (Committee member) / Arizona State University (Publisher)
Created2021
161786-Thumbnail Image.png
Description
Fiber reinforced composites are rapidly replacing conventional metallic or polymeric materials as materials of choice in a myriad of applications across a wide range of industries. The relatively low weight, high strength, high stiffness, and a variety of thermal and mechanical environmental and loading capabilities are in part what make

Fiber reinforced composites are rapidly replacing conventional metallic or polymeric materials as materials of choice in a myriad of applications across a wide range of industries. The relatively low weight, high strength, high stiffness, and a variety of thermal and mechanical environmental and loading capabilities are in part what make composite materials so appealing to material experts and design engineers. Additionally, fiber reinforced composites are highly tailorable and customized composite materials and structures can be readily designed for specific applications including those requiring particular directional material properties, fatigue resistance, damage tolerance, high temperature capabilities, or resistance to environmental degradation due to humidity and oxidation. The desirable properties of fiber reinforced composites arise from the strategic combination of multiple constituents to form a new composite material. However, the significant material anisotropy that occurs as a result of combining multiple constituents, each with different directional thermal and mechanical properties, complicates material analysis and remains a major impediment to fully understanding composite deformation and damage behavior. As a result, composite materials, especially specialized composites such as ceramic matrix composites and various multifunctional composites, are not utilized to their fullest potential. In the research presented in this dissertation, the deformation and damage behavior of several fiber reinforced composite systems were investigated. The damage accumulation and propagation behavior of carbon fiber reinforced polymer (CFRP) composites under complex in-phase biaxial fatigue loading conditions was investigated and the early stage damage and microscale damage were correlated to the eventual fatigue failure behavior and macroscale damage mechanisms. The temperature-dependent deformation and damage response of woven ceramic matrix composites (CMCs) reinforced with carbon and silicon carbide fibers was also studied. A fracture mechanics-informed continuum damage model was developed to capture the brittle damage behavior of the ceramic matrix. A multiscale thermomechanical simulation framework, consisting of cooldown simulations to capture a realistic material initial state and subsequent mechanical loading simulations to capture the temperature-dependent nonlinear stress-strain behavior, was also developed. The methodologies and results presented in this research represent substantial progress toward increasing understanding of the deformation and damage behavior of some key fiber reinforced composite materials.
ContributorsSkinner, Travis Dale (Author) / Chattopadhyay, Aditi (Thesis advisor) / Hall, Asha (Committee member) / Liu, Yongming (Committee member) / Jiao, Yang (Committee member) / Yekani-Fard, Masoud (Committee member) / Arizona State University (Publisher)
Created2021
161898-Thumbnail Image.png
Description
Desorption processes are an important part of all processes which involve utilization of solid adsorbents such as adsorption cooling, sorption thermal energy storage, and drying and dehumidification processes and are inherently energy-intensive. Here, how those energy requirements can be reduced through the application of ultrasound for three widely used

Desorption processes are an important part of all processes which involve utilization of solid adsorbents such as adsorption cooling, sorption thermal energy storage, and drying and dehumidification processes and are inherently energy-intensive. Here, how those energy requirements can be reduced through the application of ultrasound for three widely used adsorbents namely zeolite 13X, activated alumina and silica gel is investigated. To determine and justify the effectiveness of incorporating ultrasound from an energy-savings point of view, an approach of constant overall input power of 20 and 25 W was adopted. To measure the extent of the effectiveness of using ultrasound, the ultrasonic-power-to-total power ratios of 0.2, 0.25, 0.4 and 0.5 were investigated and the results compared with those of no-ultrasound (heat only) at the same total power. Duplicate experiments were performed at three nominal frequencies of 28, 40 and 80 kHz to observe the influence of frequency on regeneration dynamics. Regarding moisture removal, application of ultrasound results in higher desorption rate compared to a non-ultrasound process. A nonlinear inverse proportionality was observed between the effectiveness of ultrasound and the frequency at which it is applied. Based on the variation of desorption dynamics with ultrasonic power and frequency, three mechanisms of reduced adsorbate adsorption potential, increased adsorbate surface energy and enhanced mass diffusion are proposed. Two analytical models that describe the desorption process were developed based on the experimental data from which novel efficiency metrics were proposed, which can be employed to justify incorporating ultrasound in regeneration and drying processes.
ContributorsDaghooghi Mobarakeh, Hooman (Author) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Wang, Robert (Committee member) / Calhoun, Ronald (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2021
161858-Thumbnail Image.png
Description
Regolith excavation systems are the enabling technology that must be developed in order to implement many of the plans for in-situ resource utilization (ISRU) that have been developed in recent years to aid in creating a lasting human presence on the surface of the Moon, Mars, and other celestial bodies.

Regolith excavation systems are the enabling technology that must be developed in order to implement many of the plans for in-situ resource utilization (ISRU) that have been developed in recent years to aid in creating a lasting human presence on the surface of the Moon, Mars, and other celestial bodies. The majority of proposed ISRU excavation systems are integrated onto a wheeled mobility system, however none yet have proposed the use of a screw-propelled vehicle, which has the potential to augment and enhance the capabilities of the excavation system. As a result, CASPER, a novel screw-propelled excavation rover is developed and analyzed to determine its effectiveness as a ISRU excavation system. The excavation rate, power, velocity, cost of transport, and a new parameter, excavation transport rate, are analyzed for various configurations of the vehicle through mobility and excavation tests performed in silica sand. The optimal configuration yielded a 28.4 kg/hr excavation rate and11.2 m/min traverse rate with an overall system mass of 3.4 kg and power draw of26.3 W. CASPER’s mobility and excavation performance results are compared to four notable proposed ISRU excavation systems of various types. The results indicate that this architecture shows promise as an ISRU excavator because it provides significant excavation capability with low mass and power requirements.
ContributorsGreen, Marko (Author) / Marvi, Hamid (Thesis advisor) / Emady, Heather (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2021
161841-Thumbnail Image.png
Description
The inherent behavior of many real world applications tends to exhibit complex or chaotic patterns. A novel technique to reduce and analyze such complex systems is introduced in this work, and its applications to multiple perturbed systems are discussed comprehensively. In this work, a unified approach between the Floquet

The inherent behavior of many real world applications tends to exhibit complex or chaotic patterns. A novel technique to reduce and analyze such complex systems is introduced in this work, and its applications to multiple perturbed systems are discussed comprehensively. In this work, a unified approach between the Floquet theory for time periodic systems and the Poincare theory of Normal Forms is proposed to analyze time varying systems. The proposed unified approach is initially verified for linear time periodic systems with the aid of an intuitive state augmentation and the method of Time Independent Normal Forms (TINF). This approach also resulted in the closed form expressions for the State Transition Matrix (STM) and Lyapunov-Floquet (L-F) transformation for linear time periodic systems. The application of theory towards stability analysis is further demonstrated with the system of Suction Stabilized Floating (SSF) platform. Additionally, multiple control strategies are discussed and implemented to drive an unstable time periodic system to a desired stable point or orbit efficiently and optimally. The computed L-F transformation is further utilized to analyze nonlinear and externally excited systems with deterministic and stochastic time periodic coefficients. The central theme of this work is to verify the extension of Floquet theory towards time varying systems with periodic coefficients comprising of incommensurate frequencies or quasi-periodic systems. As per Floquet theory, a Lyapunov-Perron (L-P) transformation converts a time-varying quasi-periodic system to a time-invariant form. A class of commutative quasi-periodic systems is introduced to demonstrate the proposed theory and its applications analytically. An extension of the proposed unified approach towards analyzing the linear quasi-periodic system is observed to provide good results, computationally less complex and widely applicable for strongly excited systems. The computed L-P transformation using the unified theory is applied to analyze both commutative and non-commutative linear quasi-periodic systems with nonlinear terms and external excitation terms. For highly nonlinear quasi-periodic systems, the implementation of multiple order reduction techniques and their performance comparisons are illustrated in this work. Finally, the robustness and stability analysis of nonlinearly perturbed and stochastically excited quasi-periodic systems are performed using Lyapunov's direct method and Infante's approach.
ContributorsCherangara Subramanian, Susheelkumar (Author) / Redkar, Sangram (Thesis advisor) / Rogers, Bradley (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2021
161845-Thumbnail Image.png
Description
The hexagonal honeycomb is a bio-inspired cellular structure with a high stiffness-to-weight ratio. It has contributed to its use in several engineering applications compared to solid bodies with identical volume and material properties. This characteristic behavior is mainly attributed to the effective nature of stress distribution through the honeycomb beams

The hexagonal honeycomb is a bio-inspired cellular structure with a high stiffness-to-weight ratio. It has contributed to its use in several engineering applications compared to solid bodies with identical volume and material properties. This characteristic behavior is mainly attributed to the effective nature of stress distribution through the honeycomb beams that manifests as bending, axial, and shear deformation mechanisms. Inspired by the presence of this feature in natural honeycomb, this work focuses on the influence of the corner radius on the mechanical properties of a honeycomb structure subjected to in-plane compression loading. First, the local response at the corner node interface is investigated with the help of finite element simulation of a periodic unit cell within the linear elastic domain and validated against the best available analytical models. Next, a parametric design of experiments (DOE) study with the unit cell is defined with design points of varying circularity and cell length ratios towards identifying the optimal combination of all geometric parameters that maximize stiffness per unit mass while minimizing the stresses induced at the corner nodes. The observed trends are then compared with compression tests of 3D printed Nylon 12 honeycomb specimens of varying corner radii and wall thicknesses. The study concluded that the presence of a corner radius has a mitigating effect on peak stresses but that these effects are dependent on thickness while also increasing specific stiffness in all cases. It also points towards an optimum combination of parameters that achieve both objectives simultaneously while shedding some light on the functional benefit of this radius in wasp and bee nests that employ a hexagonal cell.
ContributorsRajeev, Athul (Author) / Bhate, Dhruv (Thesis advisor) / Oswald, Jay (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2021
161914-Thumbnail Image.png
Description
Automation has become a staple in high volume manufacturing, where the consistency and quality of a product carries as much importance as the quantity produced. The Aerospace Industry has a vested interest in expanding the application of automation beyond simply manufacturing. In this project, the process of systems engineering has

Automation has become a staple in high volume manufacturing, where the consistency and quality of a product carries as much importance as the quantity produced. The Aerospace Industry has a vested interest in expanding the application of automation beyond simply manufacturing. In this project, the process of systems engineering has been applied to the Conceptual Design Phase of product development; specifically, the Preliminary Structural Design of a Composite wing for an Unmanned Air Vehicle (UAV). Automated structural analysis can be used to develop a composite wing structure that can be directly rendered in Computer Aided Drafting (CAD) and validated using Finite Element Analysis (FEA). This concept provides the user with the ability to quickly iterate designs and demonstrates how different the “optimal light weight” composite structure must look for UAV systems of varied weight, range, and flight maneuverability.
ContributorsBlair, Martin Caceres (Author) / Takahashi, Timothy (Thesis advisor) / Murthy, Raghavendra (Committee member) / Perez, Ruben (Committee member) / Arizona State University (Publisher)
Created2021
161749-Thumbnail Image.png
Description
Recent years, there has been many attempts with different approaches to the human-robot interaction (HRI) problems. In this paper, the multi-agent interaction is formulated as a differential game with incomplete information. To tackle this problem, the parameter estimation method is utilized to obtain the approximated solution in a real time

Recent years, there has been many attempts with different approaches to the human-robot interaction (HRI) problems. In this paper, the multi-agent interaction is formulated as a differential game with incomplete information. To tackle this problem, the parameter estimation method is utilized to obtain the approximated solution in a real time basis. Previous studies in the parameter estimation made the assumption that the human parameters are known by the robot; but such may not be the case and there exists uncertainty in the modeling of the human rewards as well as human's modeling of the robot's rewards. The proposed method, empathetic estimation, is tested and compared with the ``non-empathetic'' estimation from the existing works. The case studies are conducted in an uncontrolled intersection with two agents attempting to pass efficiently. Results have shown that in the case of both agents having inconsistent belief of the other agent's parameters, the empathetic agent performs better at estimating the parameters and has higher reward values, which indicates the scenarios when empathy is essential: when agent's initial belief is mismatched from the true parameters/intent of the agents.
ContributorsChen, Yi (Author) / Ren, Yi (Thesis advisor) / Zhang, Wenlong (Committee member) / Yong, Sze Zheng (Committee member) / Arizona State University (Publisher)
Created2021
161727-Thumbnail Image.png
Description
In this thesis, the problem of designing model discrimination algorithms for unknown nonlinear systems is considered, where only raw experimental data of the system is available. This kind of model discrimination techniques finds one of its application in the estimation of the system or intent models under consideration, where all

In this thesis, the problem of designing model discrimination algorithms for unknown nonlinear systems is considered, where only raw experimental data of the system is available. This kind of model discrimination techniques finds one of its application in the estimation of the system or intent models under consideration, where all incompatible models are invalidated using new data that is available at run time. The proposed steps to reach the end goal of the algorithm for intention estimation involves two steps: First, using available experimental data of system trajectories, optimization-based techniques are used to over-approximate/abstract the dynamics of the system by constructing an upper and lower function which encapsulates/frames the true unknown system dynamics. This over-approximation is a conservative preservation of the dynamics of the system, in a way that ensures that any model which is invalidated against this approximation is guaranteed to be invalidated with the actual model of the system. The next step involves the use of optimization-based techniques to investigate the distinguishability of pairs of abstraction/approximated models using an algorithm for 'T-Distinguishability', which gives a finite horizon time 'T', within which the pair of models are guaranteed to be distinguished, and to eliminate incompatible models at run time using a 'Model Invalidation' algorithm. Furthermore, due the large amount of data under consideration, some computation-aware improvements were proposed for the processing of the raw data and the abstraction and distinguishability algorithms.The effectiveness of the above-mentioned algorithms is demonstrated using two examples. The first uses the data collected from the artificial simulation of a swarm of agents, also known as 'Boids', that move in certain patterns/formations, while the second example uses the 'HighD' dataset of naturalistic trajectories recorded on German Highways for vehicle intention estimation.
ContributorsBhagwat, Mohit Mukul (Author) / Yong, Sze Zheng (Thesis advisor) / Berman, Spring (Committee member) / Xu, Zhe (Committee member) / Arizona State University (Publisher)
Created2021