Matching Items (83)
Filtering by

Clear all filters

151772-Thumbnail Image.png
Description
Ingestion of high temperature mainstream gas into the rotor-stator cavities of a gas turbine is one of the major problems faced by the turbine designers. The ingested gas heats up rotor disks and induces higher thermal stresses on them, giving rise to durability concern. Ingestion is usually reduced by installing

Ingestion of high temperature mainstream gas into the rotor-stator cavities of a gas turbine is one of the major problems faced by the turbine designers. The ingested gas heats up rotor disks and induces higher thermal stresses on them, giving rise to durability concern. Ingestion is usually reduced by installing seals on the rotor and stator rims and by purging the disk cavity by secondary air bled from the compressor discharge. The geometry of the rim seals and the secondary air flow rate, together, influence the amount of gas that gets ingested into the cavities. Since the amount of secondary air bled off has a negative effect on the gas turbine thermal efficiency, one goal is to use the least possible amount of secondary air. This requires a good understanding of the flow and ingestion fields within a disk cavity. In the present study, the mainstream gas ingestion phenomenon has been experimentally studied in a model single-stage axial flow gas turbine. The turbine stage featured vanes and blades, and rim seals on both the rotor and stator. Additionally, the disk cavity contained a labyrinth seal radially inboard which effectively divided the cavity into a rim cavity and an inner cavity. Time-average static pressure measurements were obtained at various radial positions within the disk cavity, and in the mainstream gas path at three axial locations at the outer shroud spread circumferentially over two vane pitches. The time-average static pressure in the main gas path exhibited a periodic asymmetry following the vane pitch whose amplitude diminished with increasing distance from the vane trailing edge. The static pressure distribution increased with the secondary air flow rate within the inner cavity but was found to be almost independent of it in the rim cavity. Tracer gas (CO2) concentration measurements were conducted to determine the sealing effectiveness of the rim seals against main gas ingestion. For the rim cavity, the sealing effectiveness increased with the secondary air flow rate. Within the inner cavity however, this trend reversed -this may have been due to the presence of rotating low-pressure flow structures inboard of the labyrinth seal.
ContributorsThiagarajan, Jayanth kumar (Author) / Roy, Ramendra P (Thesis advisor) / Lee, Taewoo (Committee member) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2013
151523-Thumbnail Image.png
Description
Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and

Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and to formulate continuum models that account for the variability of the damage process due to microstructural heterogeneity. The length scale of damage with respect to that of the surrounding microstructure has proven to be a key aspect in determining sites of failure initiation. Correlations have been found between the damage sites and the surrounding microstructure to determine the preferred sites of spall damage, since it tends to localize at and around the regions of intrinsic defects such as grain boundaries and triple points. However, considerable amount of work still has to be done in this regard to determine the physics driving the damage at these intrinsic weak sites in the microstructure. The main focus of this research work is to understand the physical mechanisms behind the damage localization at these preferred sites. A crystal plasticity constitutive model is implemented with different damage criteria to study the effects of stress concentration and strain localization at the grain boundaries. A cohesive zone modeling technique is used to include the intrinsic strength of the grain boundaries in the simulations. The constitutive model is verified using single elements tests, calibrated using single crystal impact experiments and validated using bicrystal and multicrystal impact experiments. The results indicate that strain localization is the predominant driving force for damage initiation and evolution. The microstructural effects on theses damage sites are studied to attribute the extent of damage to microstructural features such as grain orientation, misorientation, Taylor factor and the grain boundary planes. The finite element simulations show good correlation with the experimental results and can be used as the preliminary step in developing accurate probabilistic models for damage nucleation.
ContributorsKrishnan, Kapil (Author) / Peralta, Pedro (Thesis advisor) / Mignolet, Marc (Committee member) / Sieradzki, Karl (Committee member) / Jiang, Hanqing (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2013
152349-Thumbnail Image.png
Description
As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective of this thesis is to solve the inverse kinematics problem

As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective of this thesis is to solve the inverse kinematics problem of redundant robot arms that results to anthropomorphic configurations. The swivel angle of the elbow was used as a human arm motion parameter for the robot arm to mimic. The swivel angle is defined as the rotation angle of the plane defined by the upper and lower arm around a virtual axis that connects the shoulder and wrist joints. Using kinematic data recorded from human subjects during every-day life tasks, the linear sensorimotor transformation model was validated and used to estimate the swivel angle, given the desired end-effector position. Defining the desired swivel angle simplifies the kinematic redundancy of the robot arm. The proposed method was tested with an anthropomorphic redundant robot arm and the computed motion profiles were compared to the ones of the human subjects. This thesis shows that the method computes anthropomorphic configurations for the robot arm, even if the robot arm has different link lengths than the human arm and starts its motion at random configurations.
ContributorsWang, Yuting (Author) / Artemiadis, Panagiotis (Thesis advisor) / Mignolet, Marc (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
153325-Thumbnail Image.png
Description
The football helmet is a device used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. The current design methodology of using a hard shell with an energy absorbing liner may be adequate for minimizing TBI, however it

The football helmet is a device used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. The current design methodology of using a hard shell with an energy absorbing liner may be adequate for minimizing TBI, however it has had less effect in minimizing mTBI. The latest research in brain injury mechanisms has established that the current design methodology has produced a helmet to reduce linear acceleration of the head. However, angular accelerations also have an adverse effect on the brain response, and must be investigated as a contributor of brain injury.

To help better understand how the football helmet design features effect the brain response during impact, this research develops a validated football helmet model and couples it with a full LS-DYNA human body model developed by the Global Human Body Modeling Consortium (v4.1.1). The human body model is a conglomeration of several validated models of different sections of the body. Of particular interest for this research is the Wayne State University Head Injury Model for modeling the brain. These human body models were validated using a combination of cadaveric and animal studies. In this study, the football helmet was validated by laboratory testing using drop tests on the crown of the helmet. By coupling the two models into one finite element model, the brain response to impact loads caused by helmet design features can be investigated. In the present research, LS-DYNA is used to study a helmet crown impact with a rigid steel plate so as to obtain the strain-rate, strain, and stress experienced in the corpus callosum, midbrain, and brain stem as these anatomical regions are areas of concern with respect to mTBI.
ContributorsDarling, Timothy (Author) / Rajan, Subramaniam D. (Thesis advisor) / Muthuswamy, Jitendran (Thesis advisor) / Oswald, Jay (Committee member) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2014
153008-Thumbnail Image.png
Description
In order to achieve higher gas turbine efficiency, the main gas temperature at turbine inlet has been steadily increased from approximately 900°C to about 1500°C over the last few decades. This temperature is higher than the maximum acceptable temperature for turbine internals. The hot main gas may get ingested into

In order to achieve higher gas turbine efficiency, the main gas temperature at turbine inlet has been steadily increased from approximately 900°C to about 1500°C over the last few decades. This temperature is higher than the maximum acceptable temperature for turbine internals. The hot main gas may get ingested into the space between rotor and stator, the rotor-stator disk cavity in a stage because of the pressure differential between main gas annulus and the disk cavity. To reduce this ingestion, the disk cavity is equipped with a rim seal; additionally, secondary (purge) air is supplied to the cavity. Since the purge air is typically bled off the compressor discharge, this reducing the overall gas turbine efficiency, much research has been carried out to estimate the minimum purge flow necessary (cw,min) for complete sealing of disk cavities.

In this work, experiments have been performed in a subscale single-stage axial turbine featuring vanes, blades and an axially-overlapping radial-clearance seal at the disk cavity rim. The turbine stage is also equipped with a labyrinth seal radially inboard. The stage geometry and the experimental conditions were such that the ingestion into the disk cavity was driven by the pressure asymmetry in the main gas annulus. In the experiments, time-averaged static pressure was measured at several locations in the main annulus and in the disk cavity; the pressure differential between a location on the vane platform close to lip (this being the rim seal part on the stator) and a location in the 'seal region' in the cavity is considered to be the driving potential for both ingestion and egress. Time-averaged volumetric concentration of the tracer gas (CO2) in the purge air supplied was measured at multiple radial locations on the stator surface. The pressure and ingestion data were then used to calculate the ingestion and egress discharge coefficients for a range of purge flow rates, employing a simple orifice model of the rim seal. For the experiments performed, the egress discharge coefficient increased and the ingestion discharge coefficient decreased with the purge air flow rate. A method for estimation of cw,min is also proposed.
ContributorsSingh, Prashant (Author) / Roy, Ramendra P (Thesis advisor) / Mignolet, Marc (Thesis advisor) / Lee, Taewoo (Committee member) / Arizona State University (Publisher)
Created2014
153021-Thumbnail Image.png
Description
The focus of this investigation is on the formulation and a validation of reduced order models (ROMs) for the prediction of the response of structures with embedded piezoelectric actuators. The ROMs considered here are those constructed in a nonintrusive manner from a commercial finite element software, NASTRAN is adopted here.

The focus of this investigation is on the formulation and a validation of reduced order models (ROMs) for the prediction of the response of structures with embedded piezoelectric actuators. The ROMs considered here are those constructed in a nonintrusive manner from a commercial finite element software, NASTRAN is adopted here. Notwithstanding the popularity of piezoelectric materials in structural dynamics related applications such as structural health monitoring and energy harvesting, not all commercial finite element software allow directly their modeling. In such cases, e.g., with NASTRAN, one can proceed with an analogy and replace the electric actuation in the piezoelectric material by a fictitious thermal effect producing the same strain. This process recasts the determination of a ROM for a structure with embedded piezoelectric actuator into a similar ROM but for a heated structure, the framework of which has recently been developed. Yet, the temperature field resulting from the analogy would be quite different from the one considered in past effort and would excite a broad array of structural modes. Accordingly, as a preamble to considering a beam with a piezoelectric layer, a simpler plate model is considered that is subjected to a uniform temperature but a complex pressure loading that excites the entire set of modes of the plate in the broad frequency band considered. The very good match of the predictions obtained by this ROM in comparison to their full finite element counterparts provides the necessary confidence to next address a beam with embedded piezoelectic actuator. The test model considered for this validation is a built-up nano beam analyzed recently in nonlinear geometric conditions by full finite elements and by a non-intrusive ROM procedure under harmonic variations of the piezoelectic voltage. This structural model and its loading conditions are very different from those considered in past applications of nonintrusive ROMs, thus the excellent results obtained here provide further support of the broad generality of the nonintrusive ROM methodology, including of the appropriateness of the "dual modes" basis functions.
ContributorsVyas, Varun (Author) / Mignolet, Marc (Thesis advisor) / Hollkamp, Joseph (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2014
153411-Thumbnail Image.png
Description
Gallium-based liquid metals are of interest for a variety of applications including flexible electronics, soft robotics, and biomedical devices. Still, nano- to microscale device fabrication with these materials is challenging because of their strong adhesion to a majority of substrates. This unusual high adhesion is attributed to the formation of

Gallium-based liquid metals are of interest for a variety of applications including flexible electronics, soft robotics, and biomedical devices. Still, nano- to microscale device fabrication with these materials is challenging because of their strong adhesion to a majority of substrates. This unusual high adhesion is attributed to the formation of a thin oxide shell; however, its role in the adhesion process has not yet been established. In the first part of the thesis, we described a multiscale study aiming at understanding the fundamental mechanisms governing wetting and adhesion of gallium-based liquid metals. In particular, macroscale dynamic contact angle measurements were coupled with Scanning Electron Microscope (SEM) imaging to relate macroscopic drop adhesion to morphology of the liquid metal-surface interface. In addition, room temperature liquid-metal microfluidic devices are also attractive systems for hyperelastic strain sensing. Currently two types of liquid metal-based strain sensors exist for inplane measurements: single-microchannel resistive and two-microchannel capacitive devices. However, with a winding serpentine channel geometry, these sensors typically have a footprint of about a square centimeter, limiting the number of sensors that can be embedded into. In the second part of the thesis, firstly, simulations and an experimental setup consisting of two GaInSn filled tubes submerged within a dielectric liquid bath are used to quantify the effects of the cylindrical electrode geometry including diameter, spacing, and meniscus shape as well as dielectric constant of the insulating liquid and the presence of tubing on the overall system's capacitance. Furthermore, a procedure for fabricating the two-liquid capacitor within a single straight polydiemethylsiloxane channel is developed. Lastly, capacitance and response of this compact device to strain and operational issues arising from complex hydrodynamics near liquid-liquid and liquid-elastomer interfaces are described.
ContributorsLiu, Shanliangzi (Author) / Rykaczewski, Konrad (Thesis advisor) / Alford, Terry (Committee member) / Herrmann, Marcus (Committee member) / Hildreth, Owen (Committee member) / Arizona State University (Publisher)
Created2015
153226-Thumbnail Image.png
Description
Fission products in nuclear fuel pellets can affect fuel performance as they change the fuel chemistry and structure. The behavior of the fission products and their release mechanisms are important to the operation of a power reactor. Research has shown that fission product release can occur through grain boundary (GB)

Fission products in nuclear fuel pellets can affect fuel performance as they change the fuel chemistry and structure. The behavior of the fission products and their release mechanisms are important to the operation of a power reactor. Research has shown that fission product release can occur through grain boundary (GB) at low burnups. Early fission gas release models, which assumed spherical grains with no effect of GB diffusion, did not capture the early stage of the release behavior well. In order to understand the phenomenon at low burnup and how it leads to the later release mechanism, a microstructurally explicit model is needed. This dissertation conducted finite element simulations of the transport behavior using 3-D microstructurally explicit models. It looks into the effects of GB character, with emphases on conditions that can lead to enhanced effective diffusion. Moreover, the relationship between temperature and fission product transport is coupled to reflect the high temperature environment.

The modeling work began with 3-D microstructure reconstruction for three uranium oxide samples with different oxygen stoichiometry: UO2.00 UO2.06 and UO2.14. The 3-D models were created based on the real microstructure of depleted UO2 samples characterized by Electron Backscattering Diffraction (EBSD) combined with serial sectioning. Mathematical equations on fission gas diffusion and heat conduction were studied and derived to simulate the fission gas transport under GB effect. Verification models showed that 2-D elements can be used to model GBs to reduce the number of elements. The effect of each variable, including fuel stoichiometry, temperature, GB diffusion, triple junction diffusion and GB thermal resistance, is verified, and they are coupled in multi-physics simulations to study the transport of fission gas at different radial location of a fuel pellet. It was demonstrated that the microstructural model can be used to incorporate the effect of different physics to study fission gas transport. The results suggested that the GB effect is the most significant at the edge of fuel pellet where the temperature is the lowest. In the high temperature region, the increase in bulk diffusivity due to excess oxygen diminished the effect of GB diffusion.
ContributorsLim, Harn Chyi (Author) / Peralta, Pedro (Thesis advisor) / Jiang, Hanqing (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2014
153180-Thumbnail Image.png
Description
This research examines several critical aspects of the so-called "film induced cleavage" model of stress corrosion cracking using silver-gold alloys as the parent-phase material. The model hypothesizes that the corrosion generates a brittle nanoporous film, which subsequently fractures forming a high-speed crack that is injected into the uncorroded parent-phase alloy.

This research examines several critical aspects of the so-called "film induced cleavage" model of stress corrosion cracking using silver-gold alloys as the parent-phase material. The model hypothesizes that the corrosion generates a brittle nanoporous film, which subsequently fractures forming a high-speed crack that is injected into the uncorroded parent-phase alloy. This high speed crack owing to its kinetic energy can penetrate beyond the corroded layer into the parent phase and thus effectively reducing strength of the parent phase. Silver-gold alloys provide an ideal system to study this effect, as hydrogen effect can be ruled out on thermodynamic basis. During corrosion of the silver-gold alloy, the less noble metal i.e. silver is removed from the system leaving behind a nanoporous gold (NPG) layer. In the case of polycrystalline material, this corrosion process proceeds deeper along the grain boundary than the matrix grain. All of the cracks with apparent penetration beyond the corroded (dealloyed) layer are intergranular. Our aim was to study the crack penetration depth along the grain boundary to ascertain whether the penetration occurs past the grain-boundary dealloyed depth. EDS and imaging in high-resolution aberration corrected scanning transmission electron microscope (STEM) and atom probe tomography (APT) have been used to evaluate the grain boundary corrosion depth.

The mechanical properties of monolithic NPG are also studied. The motivation behind this is two-fold. The crack injection depth depends on the speed of the crack formed in the nanoporous layer, which in turn depends on the mechanical properties of the NPG. Also NPG has potential applications in actuation, sensing and catalysis. The measured value of the Young's modulus of NPG with 40 nm ligament size and 28% density was ~ 2.5 GPa and the Poisson's ratio was ~ 0.20. The fracture stress was observed to be ~ 11-13 MPa. There was no significant change observed between these mechanical properties on oxidation of NPG at 1.4 V. The fracture toughness value for the NPG was ~ 10 J/m2. Also dynamic fracture tests showed that the NPG is capable of supporting crack velocities ~ 100 - 180 m/s.
ContributorsBadwe, Nilesh (Author) / Sieradzki, Karl (Thesis advisor) / Peralta, Pedro (Committee member) / Oswald, Jay (Committee member) / Mahajan, Ravi (Committee member) / Arizona State University (Publisher)
Created2014
153182-Thumbnail Image.png
Description
Commercially pure (CP) and extra low interstitial (ELI) grade Ti-alloys present excellent corrosion resistance, lightweight, and formability making them attractive materials for expanded use in transportation and medical applications. However, the strength and toughness of CP titanium are affected by relatively small variations in their impurity/solute content (IC), e.g., O,

Commercially pure (CP) and extra low interstitial (ELI) grade Ti-alloys present excellent corrosion resistance, lightweight, and formability making them attractive materials for expanded use in transportation and medical applications. However, the strength and toughness of CP titanium are affected by relatively small variations in their impurity/solute content (IC), e.g., O, Al, and V. This increase in strength is due to the fact that the solute either increases the critical stress required for the prismatic slip systems ({10-10}<1-210>) or activates another slip system ((0001)<11-20>, {10-11}<11-20>). In particular, solute additions such as O can effectively strengthen the alloy but with an attendant loss in ductility by changing the behavior from wavy (cross slip) to planar nature. In order to understand the underlying behavior of strengthening by solutes, it is important to understand the atomic scale mechanism. This dissertation aims to address this knowledge gap through a synergistic combination of density functional theory (DFT) and molecular dynamics. Further, due to the long-range strain fields of the dislocations and the periodicity of the DFT simulation cells, it is difficult to apply ab initio simulations to study the dislocation core structure. To alleviate this issue we developed a multiscale quantum mechanics/molecular mechanics approach (QM/MM) to study the dislocation core. We use the developed QM/MM method to study the pipe diffusion along a prismatic edge dislocation core. Complementary to the atomistic simulations, the Semi-discrete Variational Peierls-Nabarro model (SVPN) was also used to analyze the dislocation core structure and mobility. The chemical interaction between the solute/impurity and the dislocation core is captured by the so-called generalized stacking fault energy (GSFE) surface which was determined from DFT-VASP calculations. By taking the chemical interaction into consideration the SVPN model can predict the dislocation core structure and mobility in the presence and absence of the solute/impurity and thus reveal the effect of impurity/solute on the softening/hardening behavior in alpha-Ti. Finally, to study the interaction of the dislocation core with other planar defects such as grain boundaries (GB), we develop an automated method to theoretically generate GBs in HCP type materials.
ContributorsBhatia, Mehul Anoopkumar (Author) / Solanki, Kiran N (Thesis advisor) / Peralta, Pedro (Committee member) / Jiang, Hanqing (Committee member) / Neithalath, Narayanan (Committee member) / Rajagopalan, Jagannathan (Committee member) / Arizona State University (Publisher)
Created2014