Matching Items (504)
Filtering by

Clear all filters

157667-Thumbnail Image.png
Description
In nature, it is commonly observed that animals and birds perform movement-based thermoregulation activities to regulate their body temperatures. For example, flapping of elephant ears or plumage fluffing in birds. Taking inspiration from nature and to explore the possibilities of such heat transfer enhancements, augmentation of heat transfer rates induced

In nature, it is commonly observed that animals and birds perform movement-based thermoregulation activities to regulate their body temperatures. For example, flapping of elephant ears or plumage fluffing in birds. Taking inspiration from nature and to explore the possibilities of such heat transfer enhancements, augmentation of heat transfer rates induced by the vibration of solid and well as novel flexible pinned heatsinks were studied in this research project. Enhancement of natural convection has always been very important in improving the performance of the cooling mechanisms. In this research, flexible heatsinks were developed and they were characterized based on natural convection cooling with moderately vibrating conditions. The vibration of heated surfaces such as motor surfaces, condenser surfaces, robotic arms and exoskeletons led to the motivation of the development of heat sinks having flexible fins with an improved heat transfer capacity. The performance of an inflexible, solid copper pin fin heat sink was considered as the baseline, current industry standard for the thermal performance. It is expected to obtain maximum convective heat transfer at the resonance frequency of the flexible pin fins. Current experimental results with fixed input frequency and varying amplitudes indicate that the vibration provides a moderate improvement in convective heat transfer, however, the flexibility of fins had negligible effects.
ContributorsPrabhu, Saurabh (Author) / Rykaczewski, Konrad (Thesis advisor) / Phelan, Patrick (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2019
157679-Thumbnail Image.png
Description
Non-Destructive Testing (NDT) is a branch of scientific methods and techniques

used to evaluate the defects and irregularities in engineering materials. These methods

conduct testing without destroying or altering material’s structure and functionality. Most

of these defects are subsurface making them difficult to detect and access.

SONIC INFRARED (IR) is a relatively new and

Non-Destructive Testing (NDT) is a branch of scientific methods and techniques

used to evaluate the defects and irregularities in engineering materials. These methods

conduct testing without destroying or altering material’s structure and functionality. Most

of these defects are subsurface making them difficult to detect and access.

SONIC INFRARED (IR) is a relatively new and emerging vibrothermography

method under the category of NDT methods. This is a fast NDT inspection method that

uses an ultrasonic generator to pass an ultrasonic pulse through the test specimen which

results in a temperature variation in the test specimen. The temperature increase around

the area of the defect is more because of frictional heating due to the vibration of the

specimen. This temperature variation can be observed using a thermal camera.

In this research study, the temperature variation in the composite laminate during

the SONIC IR experimentation using an infrared thermal camera. These recorded data are

used to determine the location, dimension and depth of defects through SONIC IR NDT

method using existing defect detection algorithms. Probability of detection analysis is

used to determine the probability of detection under specific experimental conditions for

two different types of composite laminates. Lastly, the effect of the process parameters

such as number of pulses, pulse duration and time delay between pulses of this technique

on the detectability and probability of detection is studied in detail.
ContributorsDarnal, Aryabhat (Author) / Liu, Yongming (Thesis advisor) / Zhuang, Houlong (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2019
157713-Thumbnail Image.png
Description
Solar energy has become one of the most popular renewable energy in human’s life because of its abundance and environment friendliness. To achieve high solar energy conversion efficiency, it usually requires surfaces to absorb selectivity within one spectral range of interest and reflect strongly over the rest of the spectrum.

Solar energy has become one of the most popular renewable energy in human’s life because of its abundance and environment friendliness. To achieve high solar energy conversion efficiency, it usually requires surfaces to absorb selectivity within one spectral range of interest and reflect strongly over the rest of the spectrum. An economic method is always desired to fabricate spectrally selective surfaces with improved energy conversion efficiency. Colloidal lithography is a recently emerged way of nanofabrication, which has advantages of low-cost and easy operation.

In this thesis, aluminum metasurface structures are proposed based on colloidal lithography method. High Frequency Structure Simulator is used to numerically study optical properties and design the aluminum metasurfaces with selective absorption. Simulation results show that proposed aluminum metasurface structure on aluminum oxide thin film and aluminum substrate has a major reflectance dip, whose wavelength is tunable within the near-infrared and visible spectrum with metasurface size. As the metasurface is opaque due to aluminum film, it indicates strong wavelength-selective optical absorption, which is due to the magnetic resonance between the top metasurface and bottom Al film within the aluminum oxide layer.

The proposed sample is fabricated based on colloidal lithography method. Monolayer polystyrene particles of 500 nm are successfully prepared and transferred onto silicon substrate. Scanning electron microscope is used to check the surface topography. Aluminum thin film with 20-nm or 50-nm thickness is then deposited on the sample. After monolayer particles are removed, optical properties of samples are measured by micro-scale optical reflectance and transmittance microscope. Measured and simulated reflectance of these samples do not have frequency selective properties and is not sensitive to defects. The next step is to fabricate the Al metasurface on Al_2 O_3 and Al films to experimentally demonstrate the selective absorption predicted from the numerical simulation.
ContributorsGuan, Chuyun (Author) / Wang, Liping (Thesis advisor) / Azeredo, Bruno (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2019
157722-Thumbnail Image.png
Description
With the advancements in technology, it is now possible to synthesize new materials with specific microstructures, and enhanced mechanical and physical properties. One of the new class of materials are nanoscale metallic multilayers, often referred to as nanolaminates. Nanolaminates are composed of alternating, nanometer-thick layers of multiple materials (typically metals

With the advancements in technology, it is now possible to synthesize new materials with specific microstructures, and enhanced mechanical and physical properties. One of the new class of materials are nanoscale metallic multilayers, often referred to as nanolaminates. Nanolaminates are composed of alternating, nanometer-thick layers of multiple materials (typically metals or ceramics), and exhibit very high strength, wear resistance and radiation tolerance. This thesis is focused on the fabrication and mechanical characterization of nanolaminates composed of Copper and Cobalt, two metals which are nearly immiscible across the entire composition range. The synthesis of these Cu-Co nanolaminates is performed using sputtering, a well-known and technologically relevant physical vapor deposition process. X-ray diffraction is used to characterize the microstructure of the nanolaminates. Cu-Co nanolaminates with different layer thicknesses are tested using microelectromechanical systems (MEMS) based tensile testing devices fabricated using photolithography and etching processes. The stress-strain behavior of nanolaminates with varying layer thicknesses are analysed and correlated to their microstructure.
ContributorsRajarajan, Santhosh Kiran (Author) / Rajagopalan, Jagannathan (Thesis advisor) / Oswald, Jay (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2019
157774-Thumbnail Image.png
Description
Stress-related failure such as cracking are an important photovoltaic (PV) reliability issue since it accounts for a high percentage of power losses in the midlife-failure and wear-out failure regimes. Cell cracking can only be correlated with module degradation when cracks are of detectable size and detrimental to the performance. Several

Stress-related failure such as cracking are an important photovoltaic (PV) reliability issue since it accounts for a high percentage of power losses in the midlife-failure and wear-out failure regimes. Cell cracking can only be correlated with module degradation when cracks are of detectable size and detrimental to the performance. Several techniques have been explored to access the deflection and stress status on solar cell, but they have disadvantages such as high surface sensitivity.

This dissertation presents a new and non-destructive method for mapping the deflection on encapsulated solar cells using X-ray topography (XRT). This method is based on Bragg diffraction imaging, where only the areas that meet diffraction conditions will present contrast. By taking XRT images of the solar cell at various sample positions and applying an in-house developed algorithm framework, the cell‘s deflection map is obtained. Error analysis has demonstrated that the errors from the experiment and the data processing are below 4.4 and 3.3%.

Von Karman plate theory has been applied to access the stress state of the solar cells. Under the assumptions that the samples experience pure bending and plain stress conditions, the principal stresses are obtained from the cell deflection data. Results from a statistical analysis using a Weibull distribution suggest that 0.1% of the data points can contribute to critical failure. Both the soldering and lamination processes put large amounts of stress on solar cells. Even though glass/glass packaging symmetry is preferred over glass/backsheet, the solar cells inside the glass/glass packaging experience significantly more stress. Through a series of in-situ four-point bending test, the assumptions behind Von Karman theory are validated for cases where the neutral plane is displaced by the tensile and compressive stresses.

The deflection and stress mapping method is applied to two next generation PV concepts named Flex-circuit and PVMirror. The Flex-circuit module concept replaces traditional metal ribbons with Al foils for electrical contact and PVMirror concept utilizes a curved PV module design with a dichroic film for thermal storage and electrical output. The XRT framework proposed in this dissertation successfully characterized the impact of various novel interconnection and packaging solutions.
ContributorsMeng, Xiaodong (Author) / Bertoni, Marian I (Thesis advisor) / Meier, Rico (Committee member) / Holman, Zachary C (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2019
157959-Thumbnail Image.png
Description
It is well known that radiative heat transfer rate can exceed that between two blackbodies by several orders of magnitude due to the coupling of evanescent waves. One promising application of near-field thermal radiation is thermophotovoltaic (TPV) devices, which convert thermal energy to electricity. Recently, different types of metamaterials with

It is well known that radiative heat transfer rate can exceed that between two blackbodies by several orders of magnitude due to the coupling of evanescent waves. One promising application of near-field thermal radiation is thermophotovoltaic (TPV) devices, which convert thermal energy to electricity. Recently, different types of metamaterials with excitations of surface plasmon polaritons (SPPs)/surface phonon polaritons (SPhPs), magnetic polaritons (MP), and hyperbolic modes (HM), have been studied to further improve near-field radiative heat flux and conversion efficiency. On the other hand, near-field experimental demonstration between planar surfaces has been limited due to the extreme challenge in the vacuum gap control as well as the parallelism.

The main objective of this work is to experimentally study the near-field radiative transfer and the excitation of resonance modes by designing nanostructured thin films separated by nanometer vacuum gaps. In particular, the near-field radiative heat transfer between two parallel plates of intrinsic silicon wafers coated with a thin film of aluminum nanostructure is investigated. In addition, theoretical studies about the effects of different physical mechanisms such as SPhP/SPP, MPs, and HM on near-field radiative transfer in various nanostructured metamaterials are conducted particularly for near-field TPV applications. Numerical simulations are performed by using multilayer transfer matrix method, rigorous coupled wave analysis, and finite difference time domain techniques incorporated with fluctuational electrodynamics. The understanding gained here will undoubtedly benefit the spectral control of near-field thermal radiation for energy-harvesting applications like thermophotovoltaic energy conversion and radiation-based thermal management.
ContributorsSabbaghi, Payam (Author) / Wang, Liping (Thesis advisor) / Phelan, Patrick (Committee member) / Huang, Huei-Ping (Committee member) / Wang, Robert (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2019
157898-Thumbnail Image.png
Description
With the advancement of the Additive Manufacturing technology in the fields of metals, a lot of interest has developed in Laser Powder Bed (LPBF) for the Aerospace and Automotive industries. With primary challenges like high cost and time associated with this process reducing the build time is a critical component.

With the advancement of the Additive Manufacturing technology in the fields of metals, a lot of interest has developed in Laser Powder Bed (LPBF) for the Aerospace and Automotive industries. With primary challenges like high cost and time associated with this process reducing the build time is a critical component. Being a layer by layer process increasing layer thickness causes a decrease in manufacturing time. In this study, effects of the change in layer thickness in the Laser Powder Bed Fusion of Inconel 718 were evaluated. The effects were investigated for 30, 60 and 80 μm layer thicknesses and were evaluated for Relative Density, Surface Roughness and Mechanical properties, for as-printed specimens not subjected to any heat treatment. The process was optimized to print dense pasts by varying three parameters: power, velocity and hatch distance. Significant change in some properties like true Ultimate Tensile Testing (UTS), %Necking and Yield Stress was observed.
ContributorsPatil, Dhiraj Amar (Author) / Bhate, Dhruv (Thesis advisor) / Azeredo, Bruno (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2019
157558-Thumbnail Image.png
Description
This thesis explores the possibility of fabricating superconducting tunnel junctions (STJ) using double angle evaporation using an E-beam system. The traditional method of making STJs use a shadow mask to deposit two films requires the breaking of the vacuum of the main chamber. This technique has given bad results and

This thesis explores the possibility of fabricating superconducting tunnel junctions (STJ) using double angle evaporation using an E-beam system. The traditional method of making STJs use a shadow mask to deposit two films requires the breaking of the vacuum of the main chamber. This technique has given bad results and proven to be a tedious process. To improve on this technique, the E-beam system was modified by adding a load lock and transfer line to perform the multi-angle deposition and in situ oxidation in the load lock without breaking the vacuum of the main chamber. Bilayer photolithography process was used to prepare a pattern for double angle deposition for the STJ. The overlap length could be easily controlled by varying the deposition angles. The low-temperature resistivity measurement and scanning electron microscope (SEM) characterization showed that the deposited films were good. However, I-V measurement for tunnel junction did not give expected results for the quality of the fabricated STJs. The main objective of modifying the E-beam system for multiple angle deposition was achieved. It can be used for any application that requires angular deposition. The motivation for the project was to set up a system that can fabricate a device that can be used as a phonon spectrometer for phononic crystals. Future work will include improving the quality of the STJ and fabricating an STJs on both sides of a silicon substrate using a 4-angle deposition.
ContributorsRana, Ashish (Author) / Wang, Robert Y (Thesis advisor) / Newman, Nathan (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2019
157732-Thumbnail Image.png
Description
This thesis intends to cover the experimental investigation of the propagation of laser-generated optoacoustic waves in structural materials and how they can be utilized for damage detection. Firstly, a system for scanning a rectangular patch on the sample is designed. This is achieved with the help of xy stages which

This thesis intends to cover the experimental investigation of the propagation of laser-generated optoacoustic waves in structural materials and how they can be utilized for damage detection. Firstly, a system for scanning a rectangular patch on the sample is designed. This is achieved with the help of xy stages which are connected to the laser head and allow it to move on a plane. Next, a parametric study was designed to determine the optimum testing parameters of the laser. The parameters so selected were then used in a series of tests which helped in discerning how the Ultrasound Waves behave when damage is induced in the sample (in the form of addition of masses). The first test was of increasing the mases in the sample. The second test was a scan of a rectangular area of the sample with and without damage to find the effect of the added masses. Finally, the data collected in such a manner is processed with the help of the Hilbert-Huang transform to determine the time of arrival. The major benefits from this study are the fact that this is a Non-Destructive imaging technique and thus can be used as a new method for detection of defects and is fairly cheap as well.
ContributorsRavi Narayanan, Venkateshwaran (Author) / Liu, Yongming (Thesis advisor) / Zhuang, Houlong (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2019
157740-Thumbnail Image.png
Description
Droplet-structure interactions play a pivotal role in many engineering applications as droplet-based solutions are evolving. This work explores the physical understanding of these interactions through systematic research leading to improvements in thermal management via dropwise condensation (DWC), and breathable protective wearables against chemical aerosols for better thermoregulation.

In DWC, the heat

Droplet-structure interactions play a pivotal role in many engineering applications as droplet-based solutions are evolving. This work explores the physical understanding of these interactions through systematic research leading to improvements in thermal management via dropwise condensation (DWC), and breathable protective wearables against chemical aerosols for better thermoregulation.

In DWC, the heat transfer rate can be further increased by increasing the nucleation and by optimally ‘refreshing’ the surface via droplet shedding. Softening of surfaces favor the former while having an adverse effect on the latter. This optimization problem is addressed by investigating how mechanical properties of a substrate impact relevant droplet-surface interactions and DWC heat transfer rate. The results obtained by combining droplet induced surface deformation with finite element model show that softening of the substrates below a shear modulus of 500 kPa results in a significant reduction in the condensation heat transfer rate.

On the other hand, interactions between droplet and polymer leading to polymer swelling can be used to develop breathable wearables for use in chemically harsh environments. Chemical aerosols are hazardous and conventional protective measures include impermeable barriers which limit the thermoregulation. To solve this, a solution is proposed consisting of a superabsorbent polymer developed to selectively absorb these chemicals and closing the pores in the fabric. Starting from understanding and modeling the droplet induced swelling in elastomers, the extent and topological characteristic of swelling is shown to depend on the relative comparison of the polymer and aerosol geometries. Then, this modeling is extended to a customized polymer, through a simplified characterization paradigm. In that, a new method is proposed to measure the swelling parameters of the polymer-solvent pair and develop a validated model for swelling. Through this study, it is shown that for this polymer, the concentration-dependent diffusion coefficient can be measured through gravimetry and Poroelastic Relaxation Indentation, simplifying the characterization effort. Finally, this model is used to design composite fabric. Specifically, using model results, the SAP geometry, base fabric design, method of composition is optimized, and the effectiveness of the composite fabric highlighted in moderate-to-high concentrations over short durations.
ContributorsPhadnis, Akshay (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert (Committee member) / Wang, Liping (Committee member) / Oswald, Jay (Committee member) / Burgin, Timothy (Committee member) / Arizona State University (Publisher)
Created2019