Matching Items (471)
Filtering by

Clear all filters

157722-Thumbnail Image.png
Description
With the advancements in technology, it is now possible to synthesize new materials with specific microstructures, and enhanced mechanical and physical properties. One of the new class of materials are nanoscale metallic multilayers, often referred to as nanolaminates. Nanolaminates are composed of alternating, nanometer-thick layers of multiple materials (typically metals

With the advancements in technology, it is now possible to synthesize new materials with specific microstructures, and enhanced mechanical and physical properties. One of the new class of materials are nanoscale metallic multilayers, often referred to as nanolaminates. Nanolaminates are composed of alternating, nanometer-thick layers of multiple materials (typically metals or ceramics), and exhibit very high strength, wear resistance and radiation tolerance. This thesis is focused on the fabrication and mechanical characterization of nanolaminates composed of Copper and Cobalt, two metals which are nearly immiscible across the entire composition range. The synthesis of these Cu-Co nanolaminates is performed using sputtering, a well-known and technologically relevant physical vapor deposition process. X-ray diffraction is used to characterize the microstructure of the nanolaminates. Cu-Co nanolaminates with different layer thicknesses are tested using microelectromechanical systems (MEMS) based tensile testing devices fabricated using photolithography and etching processes. The stress-strain behavior of nanolaminates with varying layer thicknesses are analysed and correlated to their microstructure.
ContributorsRajarajan, Santhosh Kiran (Author) / Rajagopalan, Jagannathan (Thesis advisor) / Oswald, Jay (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2019
157774-Thumbnail Image.png
Description
Stress-related failure such as cracking are an important photovoltaic (PV) reliability issue since it accounts for a high percentage of power losses in the midlife-failure and wear-out failure regimes. Cell cracking can only be correlated with module degradation when cracks are of detectable size and detrimental to the performance. Several

Stress-related failure such as cracking are an important photovoltaic (PV) reliability issue since it accounts for a high percentage of power losses in the midlife-failure and wear-out failure regimes. Cell cracking can only be correlated with module degradation when cracks are of detectable size and detrimental to the performance. Several techniques have been explored to access the deflection and stress status on solar cell, but they have disadvantages such as high surface sensitivity.

This dissertation presents a new and non-destructive method for mapping the deflection on encapsulated solar cells using X-ray topography (XRT). This method is based on Bragg diffraction imaging, where only the areas that meet diffraction conditions will present contrast. By taking XRT images of the solar cell at various sample positions and applying an in-house developed algorithm framework, the cell‘s deflection map is obtained. Error analysis has demonstrated that the errors from the experiment and the data processing are below 4.4 and 3.3%.

Von Karman plate theory has been applied to access the stress state of the solar cells. Under the assumptions that the samples experience pure bending and plain stress conditions, the principal stresses are obtained from the cell deflection data. Results from a statistical analysis using a Weibull distribution suggest that 0.1% of the data points can contribute to critical failure. Both the soldering and lamination processes put large amounts of stress on solar cells. Even though glass/glass packaging symmetry is preferred over glass/backsheet, the solar cells inside the glass/glass packaging experience significantly more stress. Through a series of in-situ four-point bending test, the assumptions behind Von Karman theory are validated for cases where the neutral plane is displaced by the tensile and compressive stresses.

The deflection and stress mapping method is applied to two next generation PV concepts named Flex-circuit and PVMirror. The Flex-circuit module concept replaces traditional metal ribbons with Al foils for electrical contact and PVMirror concept utilizes a curved PV module design with a dichroic film for thermal storage and electrical output. The XRT framework proposed in this dissertation successfully characterized the impact of various novel interconnection and packaging solutions.
ContributorsMeng, Xiaodong (Author) / Bertoni, Marian I (Thesis advisor) / Meier, Rico (Committee member) / Holman, Zachary C (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2019
157959-Thumbnail Image.png
Description
It is well known that radiative heat transfer rate can exceed that between two blackbodies by several orders of magnitude due to the coupling of evanescent waves. One promising application of near-field thermal radiation is thermophotovoltaic (TPV) devices, which convert thermal energy to electricity. Recently, different types of metamaterials with

It is well known that radiative heat transfer rate can exceed that between two blackbodies by several orders of magnitude due to the coupling of evanescent waves. One promising application of near-field thermal radiation is thermophotovoltaic (TPV) devices, which convert thermal energy to electricity. Recently, different types of metamaterials with excitations of surface plasmon polaritons (SPPs)/surface phonon polaritons (SPhPs), magnetic polaritons (MP), and hyperbolic modes (HM), have been studied to further improve near-field radiative heat flux and conversion efficiency. On the other hand, near-field experimental demonstration between planar surfaces has been limited due to the extreme challenge in the vacuum gap control as well as the parallelism.

The main objective of this work is to experimentally study the near-field radiative transfer and the excitation of resonance modes by designing nanostructured thin films separated by nanometer vacuum gaps. In particular, the near-field radiative heat transfer between two parallel plates of intrinsic silicon wafers coated with a thin film of aluminum nanostructure is investigated. In addition, theoretical studies about the effects of different physical mechanisms such as SPhP/SPP, MPs, and HM on near-field radiative transfer in various nanostructured metamaterials are conducted particularly for near-field TPV applications. Numerical simulations are performed by using multilayer transfer matrix method, rigorous coupled wave analysis, and finite difference time domain techniques incorporated with fluctuational electrodynamics. The understanding gained here will undoubtedly benefit the spectral control of near-field thermal radiation for energy-harvesting applications like thermophotovoltaic energy conversion and radiation-based thermal management.
ContributorsSabbaghi, Payam (Author) / Wang, Liping (Thesis advisor) / Phelan, Patrick (Committee member) / Huang, Huei-Ping (Committee member) / Wang, Robert (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2019
157898-Thumbnail Image.png
Description
With the advancement of the Additive Manufacturing technology in the fields of metals, a lot of interest has developed in Laser Powder Bed (LPBF) for the Aerospace and Automotive industries. With primary challenges like high cost and time associated with this process reducing the build time is a critical component.

With the advancement of the Additive Manufacturing technology in the fields of metals, a lot of interest has developed in Laser Powder Bed (LPBF) for the Aerospace and Automotive industries. With primary challenges like high cost and time associated with this process reducing the build time is a critical component. Being a layer by layer process increasing layer thickness causes a decrease in manufacturing time. In this study, effects of the change in layer thickness in the Laser Powder Bed Fusion of Inconel 718 were evaluated. The effects were investigated for 30, 60 and 80 μm layer thicknesses and were evaluated for Relative Density, Surface Roughness and Mechanical properties, for as-printed specimens not subjected to any heat treatment. The process was optimized to print dense pasts by varying three parameters: power, velocity and hatch distance. Significant change in some properties like true Ultimate Tensile Testing (UTS), %Necking and Yield Stress was observed.
ContributorsPatil, Dhiraj Amar (Author) / Bhate, Dhruv (Thesis advisor) / Azeredo, Bruno (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2019
157558-Thumbnail Image.png
Description
This thesis explores the possibility of fabricating superconducting tunnel junctions (STJ) using double angle evaporation using an E-beam system. The traditional method of making STJs use a shadow mask to deposit two films requires the breaking of the vacuum of the main chamber. This technique has given bad results and

This thesis explores the possibility of fabricating superconducting tunnel junctions (STJ) using double angle evaporation using an E-beam system. The traditional method of making STJs use a shadow mask to deposit two films requires the breaking of the vacuum of the main chamber. This technique has given bad results and proven to be a tedious process. To improve on this technique, the E-beam system was modified by adding a load lock and transfer line to perform the multi-angle deposition and in situ oxidation in the load lock without breaking the vacuum of the main chamber. Bilayer photolithography process was used to prepare a pattern for double angle deposition for the STJ. The overlap length could be easily controlled by varying the deposition angles. The low-temperature resistivity measurement and scanning electron microscope (SEM) characterization showed that the deposited films were good. However, I-V measurement for tunnel junction did not give expected results for the quality of the fabricated STJs. The main objective of modifying the E-beam system for multiple angle deposition was achieved. It can be used for any application that requires angular deposition. The motivation for the project was to set up a system that can fabricate a device that can be used as a phonon spectrometer for phononic crystals. Future work will include improving the quality of the STJ and fabricating an STJs on both sides of a silicon substrate using a 4-angle deposition.
ContributorsRana, Ashish (Author) / Wang, Robert Y (Thesis advisor) / Newman, Nathan (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2019
157732-Thumbnail Image.png
Description
This thesis intends to cover the experimental investigation of the propagation of laser-generated optoacoustic waves in structural materials and how they can be utilized for damage detection. Firstly, a system for scanning a rectangular patch on the sample is designed. This is achieved with the help of xy stages which

This thesis intends to cover the experimental investigation of the propagation of laser-generated optoacoustic waves in structural materials and how they can be utilized for damage detection. Firstly, a system for scanning a rectangular patch on the sample is designed. This is achieved with the help of xy stages which are connected to the laser head and allow it to move on a plane. Next, a parametric study was designed to determine the optimum testing parameters of the laser. The parameters so selected were then used in a series of tests which helped in discerning how the Ultrasound Waves behave when damage is induced in the sample (in the form of addition of masses). The first test was of increasing the mases in the sample. The second test was a scan of a rectangular area of the sample with and without damage to find the effect of the added masses. Finally, the data collected in such a manner is processed with the help of the Hilbert-Huang transform to determine the time of arrival. The major benefits from this study are the fact that this is a Non-Destructive imaging technique and thus can be used as a new method for detection of defects and is fairly cheap as well.
ContributorsRavi Narayanan, Venkateshwaran (Author) / Liu, Yongming (Thesis advisor) / Zhuang, Houlong (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2019
157740-Thumbnail Image.png
Description
Droplet-structure interactions play a pivotal role in many engineering applications as droplet-based solutions are evolving. This work explores the physical understanding of these interactions through systematic research leading to improvements in thermal management via dropwise condensation (DWC), and breathable protective wearables against chemical aerosols for better thermoregulation.

In DWC, the heat

Droplet-structure interactions play a pivotal role in many engineering applications as droplet-based solutions are evolving. This work explores the physical understanding of these interactions through systematic research leading to improvements in thermal management via dropwise condensation (DWC), and breathable protective wearables against chemical aerosols for better thermoregulation.

In DWC, the heat transfer rate can be further increased by increasing the nucleation and by optimally ‘refreshing’ the surface via droplet shedding. Softening of surfaces favor the former while having an adverse effect on the latter. This optimization problem is addressed by investigating how mechanical properties of a substrate impact relevant droplet-surface interactions and DWC heat transfer rate. The results obtained by combining droplet induced surface deformation with finite element model show that softening of the substrates below a shear modulus of 500 kPa results in a significant reduction in the condensation heat transfer rate.

On the other hand, interactions between droplet and polymer leading to polymer swelling can be used to develop breathable wearables for use in chemically harsh environments. Chemical aerosols are hazardous and conventional protective measures include impermeable barriers which limit the thermoregulation. To solve this, a solution is proposed consisting of a superabsorbent polymer developed to selectively absorb these chemicals and closing the pores in the fabric. Starting from understanding and modeling the droplet induced swelling in elastomers, the extent and topological characteristic of swelling is shown to depend on the relative comparison of the polymer and aerosol geometries. Then, this modeling is extended to a customized polymer, through a simplified characterization paradigm. In that, a new method is proposed to measure the swelling parameters of the polymer-solvent pair and develop a validated model for swelling. Through this study, it is shown that for this polymer, the concentration-dependent diffusion coefficient can be measured through gravimetry and Poroelastic Relaxation Indentation, simplifying the characterization effort. Finally, this model is used to design composite fabric. Specifically, using model results, the SAP geometry, base fabric design, method of composition is optimized, and the effectiveness of the composite fabric highlighted in moderate-to-high concentrations over short durations.
ContributorsPhadnis, Akshay (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert (Committee member) / Wang, Liping (Committee member) / Oswald, Jay (Committee member) / Burgin, Timothy (Committee member) / Arizona State University (Publisher)
Created2019
157742-Thumbnail Image.png
Description
Corrosion fatigue has been of prime concern in railways, aerospace, construction industries and so on. Even in the case of many medical equipment, corrosion fatigue is considered to be a major challenge. The fact that even high strength materials have lower resistance to corrosion fatigue makes it an interesting

Corrosion fatigue has been of prime concern in railways, aerospace, construction industries and so on. Even in the case of many medical equipment, corrosion fatigue is considered to be a major challenge. The fact that even high strength materials have lower resistance to corrosion fatigue makes it an interesting area for research. The analysis of propagation of fatigue crack growth under environmental interaction and the life prediction is significant to reduce the maintenance costs and assure structural integrity. Without proper investigation of the crack extension under corrosion fatigue, the scenario can lead to catastrophic disasters due to premature failure of a structure. An attempt has been made in this study to predict the corrosion fatigue crack growth with reasonable accuracy. Models that have been developed so far predict the crack propagation for constant amplitude loading (CAL). However, most of the industrial applications encounter random loading. Hence there is a need to develop models based on time scale. An existing time scale model that can predict the fatigue crack growth for constant and variable amplitude loading (VAL) in the Paris region is initially modified to extend the prediction to near threshold and unstable crack growth region. Extensive data collection was carried out to calibrate the model for corrosion fatigue crack growth (CFCG) based on the experimental data. The time scale model is improved to incorporate the effect of corrosive environments such as NaCl and dry hydrogen in the fatigue crack growth (FCG) by investigation of the trend in change of the crack growth. The time scale model gives the advantage of coupling the time phenomenon stress corrosion cracking which is suggested as a future work in this paper.
ContributorsKurian, Bianca (Author) / Liu, Yongming (Thesis advisor) / Nian, Qiong (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2019
158136-Thumbnail Image.png
Description
Shock loading produces a compressive stress pulse with steep gradients in density, temperature, and pressure that are also often modeled as discontinuities. When a material is subject to these dynamic (shock) loading conditions, fracture and deformation patterns due to spall damage can arise. Spallation is a dynamic material failure that

Shock loading produces a compressive stress pulse with steep gradients in density, temperature, and pressure that are also often modeled as discontinuities. When a material is subject to these dynamic (shock) loading conditions, fracture and deformation patterns due to spall damage can arise. Spallation is a dynamic material failure that is caused by the nucleation, growth, and coalescence of voids, with possible ejection of the surface of the material. Intrinsic defects, such as grain boundaries are the preferred initiation sites of spall damage in high purity materials. The focus of this research is to study the phenomena that cause void nucleation and growth at a particular grain boundary (GB), chosen to maximize spall damage localization.

Bicrystal samples were shock loaded using flyer-plates via light gas gun and direct laser ablation. Stress, pulse duration, and crystal orientation along the shock direction were varied for a fixed boundary misorientation to determine thresholds for void nucleation and coalescence as functions of these parameters. Pressures for gas gun experiments ranged from 2 to 5 GPa, while pressures for laser ablation experiments varied from 17 to 25 GPa. Samples were soft recovered to perform damage characterization using electron backscattering diffraction (EBSD) and Scanning Electron Microscopy (SEM). Results showed a 14% difference in the thresholds for void nucleation and coalescence between samples with different orientations along the shock direction, which were affected by pulse duration and stress level. Fractography on boundaries with strong damage localization showed many small voids, indicating they experience rapid nucleation, causing early coalescence. Composition analysis was also performed to determine the effect of impurities on damage evolution. Results showed that higher levels of impurities led to more damage. ABAQUS/Explicit models were developed to simulate flyer-plate impact and void growth with the same crystal orientations and experimental conditions. Results are able to match the damage seen in each grain of the target experimentally. The Taylor Factor mismatch at the boundary can also be observed in the model with the higher Taylor Factor grain exhibiting more damage.
ContributorsFortin, Elizabeth Victoria (Author) / Peralta, Pedro (Thesis advisor) / Mignolet, Marc (Committee member) / Loomis, Eric (Committee member) / Oswald, Jay (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2020
158064-Thumbnail Image.png
Description
Phononic crystals are artificially engineered materials that can forbid phonon propagation in a specific frequency range that is referred to as a “phononic band gap.” Phononic crystals that have band gaps in the GHz to THz range can potentially enable sophisticated control over thermal transport with “phononic devices”. Calculations of

Phononic crystals are artificially engineered materials that can forbid phonon propagation in a specific frequency range that is referred to as a “phononic band gap.” Phononic crystals that have band gaps in the GHz to THz range can potentially enable sophisticated control over thermal transport with “phononic devices”. Calculations of the phononic band diagram are the standard method of determining if a given phononic crystal structure has a band gap. However, calculating the phononic band diagram is a computationally expensive and time-consuming process that can require sophisticated modeling and coding. In addition to this computational burden, the inverse process of designing a phononic crystal with a specific band gap center frequency and width is a challenging problem that requires extensive trial-and-error work.

In this dissertation, I first present colloidal nanocrystal superlattices as a new class of three-dimensional phononic crystals with periodicity in the sub-20 nm size regime using the plane wave expansion method. These calculations show that colloidal nanocrystal superlattices possess phononic band gaps with center frequencies in the 102 GHz range and widths in the 101 GHz range. Varying the colloidal nanocrystal size and composition provides additional opportunities to fine-tune the phononic band gap. This suggests that colloidal nanocrystal superlattices are a promising platform for the creation of high frequency phononic crystals.

For the next topic, I explore opportunities to use supervised machine learning for expedited discovery of phononic band gap presence, center frequency and width for over 14,000 two-dimensional phononic crystal structures. The best trained model predicts band gap formation, center frequencies and band gap widths, with 94% accuracy and coefficients of determination (R2) values of 0.66 and 0.83, respectively.

Lastly, I expand the above machine learning approach to use machine learning to design a phononic crystal for a given set of phononic band gap properties. The best model could predict elastic modulus of host and inclusion, density of host and inclusion, and diameter-to-lattice constant ratio for target center and width frequencies with coefficients of determinations of 0.94, 0.98, 0.94, 0.71, and 0.94 respectively. The high values coefficients of determination represents great opportunity for phononic crystal design.
ContributorsSadat, Seid Mohamadali (Author) / Wang, Robert Y (Thesis advisor) / Huang, Huei-Ping (Committee member) / Ankit, Kumar (Committee member) / Wang, Liping (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2020