Matching Items (55)
Filtering by

Clear all filters

152030-Thumbnail Image.png
Description
Recently, the use of zinc oxide (ZnO) nanowires as an interphase in composite materials has been demonstrated to increase the interfacial shear strength between carbon fiber and an epoxy matrix. In this research work, the strong adhesion between ZnO and carbon fiber is investigated to elucidate the interactions at the

Recently, the use of zinc oxide (ZnO) nanowires as an interphase in composite materials has been demonstrated to increase the interfacial shear strength between carbon fiber and an epoxy matrix. In this research work, the strong adhesion between ZnO and carbon fiber is investigated to elucidate the interactions at the interface that result in high interfacial strength. First, molecular dynamics (MD) simulations are performed to calculate the adhesive energy between bare carbon and ZnO. Since the carbon fiber surface has oxygen functional groups, these were modeled and MD simulations showed the preference of ketones to strongly interact with ZnO, however, this was not observed in the case of hydroxyls and carboxylic acid. It was also found that the ketone molecules ability to change orientation facilitated the interactions with the ZnO surface. Experimentally, the atomic force microscope (AFM) was used to measure the adhesive energy between ZnO and carbon through a liftoff test by employing highly oriented pyrolytic graphite (HOPG) substrate and a ZnO covered AFM tip. Oxygen functionalization of the HOPG surface shows the increase of adhesive energy. Additionally, the surface of ZnO was modified to hold a negative charge, which demonstrated an increase in the adhesive energy. This increase in adhesion resulted from increased induction forces given the relatively high polarizability of HOPG and the preservation of the charge on ZnO surface. It was found that the additional negative charge can be preserved on the ZnO surface because there is an energy barrier since carbon and ZnO form a Schottky contact. Other materials with the same ionic properties of ZnO but with higher polarizability also demonstrated good adhesion to carbon. This result substantiates that their induced interaction can be facilitated not only by the polarizability of carbon but by any of the materials at the interface. The versatility to modify the magnitude of the induced interaction between carbon and an ionic material provides a new route to create interfaces with controlled interfacial strength.
ContributorsGalan Vera, Magdian Ulises (Author) / Sodano, Henry A (Thesis advisor) / Jiang, Hanqing (Committee member) / Solanki, Kiran (Committee member) / Oswald, Jay (Committee member) / Speyer, Gil (Committee member) / Arizona State University (Publisher)
Created2013
151455-Thumbnail Image.png
Description
Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving

Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving reliable composite systems is a strong capability of assessing and inspecting physical damage of critical structural components. Installation of a robust Structural Health Monitoring (SHM) system would be very valuable in detecting the onset of composite failure. A number of major issues still require serious attention in connection with the research and development aspects of sensor-integrated reliable SHM systems for composite structures. In particular, the sensitivity of currently available sensor systems does not allow detection of micro level damage; this limits the capability of data driven SHM systems. As a fundamental layer in SHM, modeling can provide in-depth information on material and structural behavior for sensing and detection, as well as data for learning algorithms. This dissertation focusses on the development of a multiscale analysis framework, which is used to detect various forms of damage in complex composite structures. A generalized method of cells based micromechanics analysis, as implemented in NASA's MAC/GMC code, is used for the micro-level analysis. First, a baseline study of MAC/GMC is performed to determine the governing failure theories that best capture the damage progression. The deficiencies associated with various layups and loading conditions are addressed. In most micromechanics analysis, a representative unit cell (RUC) with a common fiber packing arrangement is used. The effect of variation in this arrangement within the RUC has been studied and results indicate this variation influences the macro-scale effective material properties and failure stresses. The developed model has been used to simulate impact damage in a composite beam and an airfoil structure. The model data was verified through active interrogation using piezoelectric sensors. The multiscale model was further extended to develop a coupled damage and wave attenuation model, which was used to study different damage states such as fiber-matrix debonding in composite structures with surface bonded piezoelectric sensors.
ContributorsMoncada, Albert (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Rajadas, John (Committee member) / Yekani Fard, Masoud (Committee member) / Arizona State University (Publisher)
Created2012
151523-Thumbnail Image.png
Description
Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and

Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and to formulate continuum models that account for the variability of the damage process due to microstructural heterogeneity. The length scale of damage with respect to that of the surrounding microstructure has proven to be a key aspect in determining sites of failure initiation. Correlations have been found between the damage sites and the surrounding microstructure to determine the preferred sites of spall damage, since it tends to localize at and around the regions of intrinsic defects such as grain boundaries and triple points. However, considerable amount of work still has to be done in this regard to determine the physics driving the damage at these intrinsic weak sites in the microstructure. The main focus of this research work is to understand the physical mechanisms behind the damage localization at these preferred sites. A crystal plasticity constitutive model is implemented with different damage criteria to study the effects of stress concentration and strain localization at the grain boundaries. A cohesive zone modeling technique is used to include the intrinsic strength of the grain boundaries in the simulations. The constitutive model is verified using single elements tests, calibrated using single crystal impact experiments and validated using bicrystal and multicrystal impact experiments. The results indicate that strain localization is the predominant driving force for damage initiation and evolution. The microstructural effects on theses damage sites are studied to attribute the extent of damage to microstructural features such as grain orientation, misorientation, Taylor factor and the grain boundary planes. The finite element simulations show good correlation with the experimental results and can be used as the preliminary step in developing accurate probabilistic models for damage nucleation.
ContributorsKrishnan, Kapil (Author) / Peralta, Pedro (Thesis advisor) / Mignolet, Marc (Committee member) / Sieradzki, Karl (Committee member) / Jiang, Hanqing (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2013
152982-Thumbnail Image.png
Description
Damage detection in heterogeneous material systems is a complex problem and requires an in-depth understanding of the material characteristics and response under varying load and environmental conditions. A significant amount of research has been conducted in this field to enhance the fidelity of damage assessment methodologies, using a wide range

Damage detection in heterogeneous material systems is a complex problem and requires an in-depth understanding of the material characteristics and response under varying load and environmental conditions. A significant amount of research has been conducted in this field to enhance the fidelity of damage assessment methodologies, using a wide range of sensors and detection techniques, for both metallic materials and composites. However, detecting damage at the microscale is not possible with commercially available sensors. A probable way to approach this problem is through accurate and efficient multiscale modeling techniques, which are capable of tracking damage initiation at the microscale and propagation across the length scales. The output from these models will provide an improved understanding of damage initiation; the knowledge can be used in conjunction with information from physical sensors to improve the size of detectable damage. In this research, effort has been dedicated to develop multiscale modeling approaches and associated damage criteria for the estimation of damage evolution across the relevant length scales. Important issues such as length and time scales, anisotropy and variability in material properties at the microscale, and response under mechanical and thermal loading are addressed. Two different material systems have been studied: metallic material and a novel stress-sensitive epoxy polymer.

For metallic material (Al 2024-T351), the methodology initiates at the microscale where extensive material characterization is conducted to capture the microstructural variability. A statistical volume element (SVE) model is constructed to represent the material properties. Geometric and crystallographic features including grain orientation, misorientation, size, shape, principal axis direction and aspect ratio are captured. This SVE model provides a computationally efficient alternative to traditional techniques using representative volume element (RVE) models while maintaining statistical accuracy. A physics based multiscale damage criterion is developed to simulate the fatigue crack initiation. The crack growth rate and probable directions are estimated simultaneously.

Mechanically sensitive materials that exhibit specific chemical reactions upon external loading are currently being investigated for self-sensing applications. The "smart" polymer modeled in this research consists of epoxy resin, hardener, and a stress-sensitive material called mechanophore The mechanophore activation is based on covalent bond-breaking induced by external stimuli; this feature can be used for material-level damage detections. In this work Tris-(Cinnamoyl oxymethyl)-Ethane (TCE) is used as the cyclobutane-based mechanophore (stress-sensitive) material in the polymer matrix. The TCE embedded polymers have shown promising results in early damage detection through mechanically induced fluorescence. A spring-bead based network model, which bridges nanoscale information to higher length scales, has been developed to model this material system. The material is partitioned into discrete mass beads which are linked using linear springs at the microscale. A series of MD simulations were performed to define the spring stiffness in the statistical network model. By integrating multiple spring-bead models a network model has been developed to represent the material properties at the mesoscale. The model captures the statistical distribution of crosslinking degree of the polymer to represent the heterogeneous material properties at the microscale. The developed multiscale methodology is computationally efficient and provides a possible means to bridge multiple length scales (from 10 nm in MD simulation to 10 mm in FE model) without significant loss of accuracy. Parametric studies have been conducted to investigate the influence of the crosslinking degree on the material behavior. The developed methodology has been used to evaluate damage evolution in the self-sensing polymer.
ContributorsZhang, Jinjun (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Jiang, Hanqing (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2014
153438-Thumbnail Image.png
Description
Cavitation erosion is a significant cause of wear in marine components, such as impellers, propellers or rudders. While the erosion process has been widely studied on metals, the effect of cavitation on polymers is not well-understood. The stress response in metals differs greatly from that of polymers, e.g. rate and

Cavitation erosion is a significant cause of wear in marine components, such as impellers, propellers or rudders. While the erosion process has been widely studied on metals, the effect of cavitation on polymers is not well-understood. The stress response in metals differs greatly from that of polymers, e.g. rate and temperature effects are far more important, thus damage and wear mechanisms of polymers under cavitating flows are significantly different. In this work, heat-driven failure caused by viscous dissipation and void nucleation resulting from tensile stresses arising from stress wave reflections are investigated as two possible material failure mechanisms.

As a first step in developing a fundamental understanding of the cavitation erosion process on polymer surfaces, simulations are performed of the collapse of individual bubbles against a compliant surface e.g. metallic substrates with polyurea coatings. The surface response of collapse-driven impact loads is represented by a idealized, time-dependent, Gaussian pressure distribution on the surface. A two-dimensional distribution of load radii and durations is considered corresponding to characteristic of cavitating flows accelerated erosion experiments. Finite element simulations are performed to fit a response curve that relates the loading parameters to the energy dissipated in the coating and integrated with collapse statistics to generate an expected heat input into the coating.

The impulsive pressure, which is generated due to bubble collapse, impacts the material and generates intense shock waves. The stress waves within the material reflects by interaction with the substrate. A transient region of high tensile stress is produced by the interaction of these waves. Simulations suggests that maximum hydrostatic tension which cause failure of polyurea layer is observed in thick coating. Also, the dissipated viscous energy and corresponding temperature rise in a polyurea is calculated, and it is concluded that temperature has influence on deformation.
ContributorsPanwar, Ajay (Author) / Oswald, Jay (Thesis advisor) / Dooley, Kevin (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2015
153495-Thumbnail Image.png
Description
Recent studies of the occurrence of post-flutter limit cycle oscillations (LCO) of the F-16 have provided good support to the long-standing hypothesis that this phenomenon involves a nonlinear structural damping. A potential mechanism for the appearance of nonlinearity in the damping are the nonlinear geometric effects that arise when the

Recent studies of the occurrence of post-flutter limit cycle oscillations (LCO) of the F-16 have provided good support to the long-standing hypothesis that this phenomenon involves a nonlinear structural damping. A potential mechanism for the appearance of nonlinearity in the damping are the nonlinear geometric effects that arise when the deformations become large enough to exceed the linear regime. In this light, the focus of this investigation is first on extending nonlinear reduced order modeling (ROM) methods to include viscoelasticity which is introduced here through a linear Kelvin-Voigt model in the undeformed configuration. Proceeding with a Galerkin approach, the ROM governing equations of motion are obtained and are found to be of a generalized van der Pol-Duffing form with parameters depending on the structure and the chosen basis functions. An identification approach of the nonlinear damping parameters is next proposed which is applicable to structures modeled within commercial finite element software.

The effects of this nonlinear damping mechanism on the post-flutter response is next analyzed on the Goland wing through time-marching of the aeroelastic equations comprising a rational fraction approximation of the linear aerodynamic forces. It is indeed found that the nonlinearity in the damping can stabilize the unstable aerodynamics and lead to finite amplitude limit cycle oscillations even when the stiffness related nonlinear geometric effects are neglected. The incorporation of these latter effects in the model is found to further decrease the amplitude of LCO even though the dominant bending motions do not seem to stiffen as the level of displacements is increased in static analyses.
ContributorsSong, Pengchao (Author) / Mignolet, Marc P (Thesis advisor) / Chattopadhyay, Aditi (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2015
153325-Thumbnail Image.png
Description
The football helmet is a device used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. The current design methodology of using a hard shell with an energy absorbing liner may be adequate for minimizing TBI, however it

The football helmet is a device used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. The current design methodology of using a hard shell with an energy absorbing liner may be adequate for minimizing TBI, however it has had less effect in minimizing mTBI. The latest research in brain injury mechanisms has established that the current design methodology has produced a helmet to reduce linear acceleration of the head. However, angular accelerations also have an adverse effect on the brain response, and must be investigated as a contributor of brain injury.

To help better understand how the football helmet design features effect the brain response during impact, this research develops a validated football helmet model and couples it with a full LS-DYNA human body model developed by the Global Human Body Modeling Consortium (v4.1.1). The human body model is a conglomeration of several validated models of different sections of the body. Of particular interest for this research is the Wayne State University Head Injury Model for modeling the brain. These human body models were validated using a combination of cadaveric and animal studies. In this study, the football helmet was validated by laboratory testing using drop tests on the crown of the helmet. By coupling the two models into one finite element model, the brain response to impact loads caused by helmet design features can be investigated. In the present research, LS-DYNA is used to study a helmet crown impact with a rigid steel plate so as to obtain the strain-rate, strain, and stress experienced in the corpus callosum, midbrain, and brain stem as these anatomical regions are areas of concern with respect to mTBI.
ContributorsDarling, Timothy (Author) / Rajan, Subramaniam D. (Thesis advisor) / Muthuswamy, Jitendran (Thesis advisor) / Oswald, Jay (Committee member) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2014
153327-Thumbnail Image.png
Description
Monte Carlo simulations are traditionally carried out for the determination of the amplification of forced vibration response of turbomachine/jet engine blades to mistuning. However, this effort can be computationally time consuming even when using the various reduced order modeling techniques. Accordingly, some investigations in the past have focused on obtaining

Monte Carlo simulations are traditionally carried out for the determination of the amplification of forced vibration response of turbomachine/jet engine blades to mistuning. However, this effort can be computationally time consuming even when using the various reduced order modeling techniques. Accordingly, some investigations in the past have focused on obtaining simple approximate estimates for this amplification. In particular, two of these have proposed the use of harmonic patterns of the blade properties around the disk as an approximate alternative to the many random patterns of Monte Carlo analyses. These investigations, while quite encouraging, have relied solely on single degree of freedom per sector models of the rotor.

In this light, the overall focus of the present effort is a revisit of harmonic

mistuning of rotors focusing first the confirmation of the previously obtained findings with a more detailed model of the blisk in both conditions of an isolated blade-dominated resonance and of a veering between blade and disk dominated modes. The latter condition cannot be simulated by a single degree of freedom per sector model. Further, the analysis will consider the distinct cases of mistuning due to variations of material properties (Young's modulus) and geometric properties (geometric mistuning). In the single degree of freedom model, both mistuning types are equivalent but they are not, as demonstrated here, in more realistic models. The difference arises because changes in geometry induce not only changes in natural frequencies of the blades alone but of their modes and the importance of these two sources of variability is discussed with both Monte Carlo simulation and harmonic mistuning results.

The present investigation focuses also on the possible extension of the harmonic mistuning concept and of its quantitative information that can be derived from such analyses. From it, a novel measure of blade-disk coupling is introduced and assessed in comparison with the coupling index introduced in the past. In conclusions, the low cost of harmonic mistuning computations in comparison with full Monte Carlo simulations is

demonstrated to be worthwhile to elucidate the basic behavior of the mistuned rotor in a random setting.
ContributorsSahoo, Saurav (Author) / Mignolet, Marc Paul (Thesis advisor) / Chattopadhyay, Aditi (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2014
153180-Thumbnail Image.png
Description
This research examines several critical aspects of the so-called "film induced cleavage" model of stress corrosion cracking using silver-gold alloys as the parent-phase material. The model hypothesizes that the corrosion generates a brittle nanoporous film, which subsequently fractures forming a high-speed crack that is injected into the uncorroded parent-phase alloy.

This research examines several critical aspects of the so-called "film induced cleavage" model of stress corrosion cracking using silver-gold alloys as the parent-phase material. The model hypothesizes that the corrosion generates a brittle nanoporous film, which subsequently fractures forming a high-speed crack that is injected into the uncorroded parent-phase alloy. This high speed crack owing to its kinetic energy can penetrate beyond the corroded layer into the parent phase and thus effectively reducing strength of the parent phase. Silver-gold alloys provide an ideal system to study this effect, as hydrogen effect can be ruled out on thermodynamic basis. During corrosion of the silver-gold alloy, the less noble metal i.e. silver is removed from the system leaving behind a nanoporous gold (NPG) layer. In the case of polycrystalline material, this corrosion process proceeds deeper along the grain boundary than the matrix grain. All of the cracks with apparent penetration beyond the corroded (dealloyed) layer are intergranular. Our aim was to study the crack penetration depth along the grain boundary to ascertain whether the penetration occurs past the grain-boundary dealloyed depth. EDS and imaging in high-resolution aberration corrected scanning transmission electron microscope (STEM) and atom probe tomography (APT) have been used to evaluate the grain boundary corrosion depth.

The mechanical properties of monolithic NPG are also studied. The motivation behind this is two-fold. The crack injection depth depends on the speed of the crack formed in the nanoporous layer, which in turn depends on the mechanical properties of the NPG. Also NPG has potential applications in actuation, sensing and catalysis. The measured value of the Young's modulus of NPG with 40 nm ligament size and 28% density was ~ 2.5 GPa and the Poisson's ratio was ~ 0.20. The fracture stress was observed to be ~ 11-13 MPa. There was no significant change observed between these mechanical properties on oxidation of NPG at 1.4 V. The fracture toughness value for the NPG was ~ 10 J/m2. Also dynamic fracture tests showed that the NPG is capable of supporting crack velocities ~ 100 - 180 m/s.
ContributorsBadwe, Nilesh (Author) / Sieradzki, Karl (Thesis advisor) / Peralta, Pedro (Committee member) / Oswald, Jay (Committee member) / Mahajan, Ravi (Committee member) / Arizona State University (Publisher)
Created2014
150141-Thumbnail Image.png
Description
A method of determining nanoparticle temperature through fluorescence intensity levels is described. Intracellular processes are often tracked through the use of fluorescence tagging, and ideal temperatures for many of these processes are unknown. Through the use of fluorescence-based thermometry, cellular processes such as intracellular enzyme movement can be studied and

A method of determining nanoparticle temperature through fluorescence intensity levels is described. Intracellular processes are often tracked through the use of fluorescence tagging, and ideal temperatures for many of these processes are unknown. Through the use of fluorescence-based thermometry, cellular processes such as intracellular enzyme movement can be studied and their respective temperatures established simultaneously. Polystyrene and silica nanoparticles are synthesized with a variety of temperature-sensitive dyes such as BODIPY, rose Bengal, Rhodamine dyes 6G, 700, and 800, and Nile Blue A and Nile Red. Photographs are taken with a QImaging QM1 Questar EXi Retiga camera while particles are heated from 25 to 70 C and excited at 532 nm with a Coherent DPSS-532 laser. Photographs are converted to intensity images in MATLAB and analyzed for fluorescence intensity, and plots are generated in MATLAB to describe each dye's intensity vs temperature. Regression curves are created to describe change in fluorescence intensity over temperature. Dyes are compared as nanoparticle core material is varied. Large particles are also created to match the camera's optical resolution capabilities, and it is established that intensity values increase proportionally with nanoparticle size. Nile Red yielded the closest-fit model, with R2 values greater than 0.99 for a second-order polynomial fit. By contrast, Rhodamine 6G only yielded an R2 value of 0.88 for a third-order polynomial fit, making it the least reliable dye for temperature measurements using the polynomial model. Of particular interest in this work is Nile Blue A, whose fluorescence-temperature curve yielded a much different shape from the other dyes. It is recommended that future work describe a broader range of dyes and nanoparticle sizes, and use multiple excitation wavelengths to better quantify each dye's quantum efficiency. Further research into the effects of nanoparticle size on fluorescence intensity levels should be considered as the particles used here greatly exceed 2 ìm. In addition, Nile Blue A should be further investigated as to why its fluorescence-temperature curve did not take on a characteristic shape for a temperature-sensitive dye in these experiments.
ContributorsTomforde, Christine (Author) / Phelan, Patrick (Thesis advisor) / Dai, Lenore (Committee member) / Adrian, Ronald (Committee member) / Arizona State University (Publisher)
Created2011