Matching Items (289)
Filtering by

Clear all filters

152510-Thumbnail Image.png
Description
Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two

Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two distinct experimental studies were performed to further the understanding of fatigue damage mechanisms in aluminum alloys and their composites, specifically fracture and plasticity. Fatigue resistance of metal matrix composites (MMCs) depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this work was to obtain a fundamental understanding of fatigue crack growth behavior in SiC particle-reinforced 2080 Al alloy composites. In situ X-ray synchrotron tomography was performed on two samples at low (R=0.1) and at high (R=0.6) R-ratios. The resulting reconstructed images were used to obtain three-dimensional (3D) rendering of the particles and fatigue crack. Behaviors of the particles and crack, as well as their interaction, were analyzed and quantified. Four-dimensional (4D) visual representations were constructed to aid in the overall understanding of damage evolution. During fatigue crack growth in ductile materials, a plastic zone is created in the region surrounding the crack tip. Knowledge of the plastic zone is important for the understanding of fatigue crack formation as well as subsequent growth behavior. The goal of this work was to quantify the 3D size and shape of the plastic zone in 7075 Al alloys. X-ray synchrotron tomography and Laue microdiffraction were used to non-destructively characterize the volume surrounding a fatigue crack tip. The precise 3D crack profile was segmented from the reconstructed tomography data. Depth-resolved Laue patterns were obtained using differential-aperture X-ray structural microscopy (DAXM), from which peak-broadening characteristics were quantified. Plasticity, as determined by the broadening of diffracted peaks, was mapped in 3D. Two-dimensional (2D) maps of plasticity were directly compared to the corresponding tomography slices. A 3D representation of the plastic zone surrounding the fatigue crack was generated by superimposing the mapped plasticity on the 3D crack profile.
ContributorsHruby, Peter (Author) / Chawla, Nikhilesh (Thesis advisor) / Solanki, Kiran (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2014
152472-Thumbnail Image.png
Description
ABSTRACT Electronics especially mobile electronics such as smart phones, tablet PCs, notebooks and digital cameras are undergoing rapid development nowadays and have thoroughly changed our lives. With the requirement of more transistors, higher power, smaller size, lighter weight and even bendability, thermal management of these devices became one of the

ABSTRACT Electronics especially mobile electronics such as smart phones, tablet PCs, notebooks and digital cameras are undergoing rapid development nowadays and have thoroughly changed our lives. With the requirement of more transistors, higher power, smaller size, lighter weight and even bendability, thermal management of these devices became one of the key challenges. Compared to active heat management system, heat pipe, which is a passive fluidic system, is considered promising to solve this problem. However, traditional heat pipes have size, weight and capillary limitation. Thus new type of heat pipe with smaller size, lighter weight and higher capillary pressure is needed. Nanofiber has been proved with superior properties and has been applied in multiple areas. This study discussed the possibility of applying nanofiber in heat pipe as new wick structure. In this study, a needleless electrospinning device with high productivity rate was built onsite to systematically investigate the effect of processing parameters on fiber properties as well as to generate nanofiber mat to evaluate its capability in electronics cooling. Polyethylene oxide (PEO) and Polyvinyl Alcohol (PVA) nanofibers were generated. Tensiometer was used for wettability measurement. The results show that independent parameters including spinneret type, working distance, solution concentration and polymer type are strongly correlated with fiber morphology compared to other parameters. The results also show that the fabricated nanofiber mat has high capillary pressure.
ContributorsSun, Tianwei (Author) / Jiang, Hanqing (Thesis advisor) / Yu, Hongyu (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2014
152349-Thumbnail Image.png
Description
As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective of this thesis is to solve the inverse kinematics problem

As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective of this thesis is to solve the inverse kinematics problem of redundant robot arms that results to anthropomorphic configurations. The swivel angle of the elbow was used as a human arm motion parameter for the robot arm to mimic. The swivel angle is defined as the rotation angle of the plane defined by the upper and lower arm around a virtual axis that connects the shoulder and wrist joints. Using kinematic data recorded from human subjects during every-day life tasks, the linear sensorimotor transformation model was validated and used to estimate the swivel angle, given the desired end-effector position. Defining the desired swivel angle simplifies the kinematic redundancy of the robot arm. The proposed method was tested with an anthropomorphic redundant robot arm and the computed motion profiles were compared to the ones of the human subjects. This thesis shows that the method computes anthropomorphic configurations for the robot arm, even if the robot arm has different link lengths than the human arm and starts its motion at random configurations.
ContributorsWang, Yuting (Author) / Artemiadis, Panagiotis (Thesis advisor) / Mignolet, Marc (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
151838-Thumbnail Image.png
Description
The objective of this research is to develop methods for generating the Tolerance-Map for a line-profile that is specified by a designer to control the geometric profile shape of a surface. After development, the aim is to find one that can be easily implemented in computer software using existing libraries.

The objective of this research is to develop methods for generating the Tolerance-Map for a line-profile that is specified by a designer to control the geometric profile shape of a surface. After development, the aim is to find one that can be easily implemented in computer software using existing libraries. Two methods were explored: the parametric modeling method and the decomposed modeling method. The Tolerance-Map (T-Map) is a hypothetical point-space, each point of which represents one geometric variation of a feature in its tolerance-zone. T-Maps have been produced for most of the tolerance classes that are used by designers, but, prior to the work of this project, the method of construction required considerable intuitive input, rather than being based primarily on automated computer tools. Tolerances on line-profiles are used to control cross-sectional shapes of parts, such as every cross-section of a mildly twisted compressor blade. Such tolerances constrain geometric manufacturing variations within a specified two-dimensional tolerance-zone. A single profile tolerance may be used to control position, orientation, and form of the cross-section. Four independent variables capture all of the profile deviations: two independent translations in the plane of the profile, one rotation in that plane, and the size-increment necessary to identify one of the allowable parallel profiles. For the selected method of generation, the line profile is decomposed into three types of segments, a primitive T-Map is produced for each segment, and finally the T-Maps from all the segments are combined to obtain the T-Map for the given profile. The types of segments are the (straight) line-segment, circular arc-segment, and the freeform-curve segment. The primitive T-Maps are generated analytically, and, for freeform-curves, they are built approximately with the aid of the computer. A deformation matrix is used to transform the primitive T-Maps to a single coordinate system for the whole profile. The T-Map for the whole line profile is generated by the Boolean intersection of the primitive T-Maps for the individual profile segments. This computer-implemented method can generate T-Maps for open profiles, closed ones, and those containing concave shapes.
ContributorsHe, Yifei (Author) / Davidson, Joseph (Thesis advisor) / Shah, Jami (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2013
152732-Thumbnail Image.png
Description
The presented work in this report is about Real time Estimation of wind and analyzing current wind correction algorithm in commercial off the shelf Autopilot board. The open source ArduPilot Mega 2.5 (APM 2.5) board manufactured by 3D Robotics is used. Currently there is lot of development being done in

The presented work in this report is about Real time Estimation of wind and analyzing current wind correction algorithm in commercial off the shelf Autopilot board. The open source ArduPilot Mega 2.5 (APM 2.5) board manufactured by 3D Robotics is used. Currently there is lot of development being done in the field of Unmanned Aerial Systems (UAVs), various aerial platforms and corresponding; autonomous systems for them. This technology has advanced to such a stage that UAVs can be used for specific designed missions and deployed with reliability. But in some areas like missions requiring high maneuverability with greater efficiency is still under research area. This would help in increasing reliability and augmenting range of UAVs significantly. One of the problems addressed through this thesis work is, current autopilot systems have algorithm that handles wind by attitude correction with appropriate Crab angle. But the real time wind vector (direction) and its calculated velocity is based on geometrical and algebraic transformation between ground speed and air speed vectors. This method of wind estimation and prediction, many a times leads to inaccuracy in attitude correction. The same has been proved in the following report with simulation and actual field testing. In later part, new ways to tackle while flying windy conditions have been proposed.
ContributorsBiradar, Anandrao Shesherao (Author) / Saripalli, Srikanth (Thesis advisor) / Berman, Spring (Thesis advisor) / Thanga, Jekan (Committee member) / Arizona State University (Publisher)
Created2014
152789-Thumbnail Image.png
Description
Multi-pulse particle tracking velocimetry (multi-pulse PTV) is a recently proposed flow measurement technique aiming to improve the performance of conventional PTV/ PIV. In this work, multi-pulse PTV is assessed based on PTV simulations in terms of spatial resolution, velocity measurement accuracy and the capability of acceleration measurement. The errors of

Multi-pulse particle tracking velocimetry (multi-pulse PTV) is a recently proposed flow measurement technique aiming to improve the performance of conventional PTV/ PIV. In this work, multi-pulse PTV is assessed based on PTV simulations in terms of spatial resolution, velocity measurement accuracy and the capability of acceleration measurement. The errors of locating particles, velocity measurement and acceleration measurement are analytically calculated and compared among quadruple-pulse, triple-pulse and dual-pulse PTV. The optimizations of triple-pulse and quadruple-pulse PTV are discussed, and criteria are developed to minimize the combined error in position, velocity and acceleration. Experimentally, the velocity and acceleration fields of a round impinging air jet are measured to test the triple-pulse technique. A high speed beam-splitting camera and a custom 8-pulsed laser system are utilized to achieve good timing flexibility and temporal resolution. A new method to correct the registration error between CCDs is also presented. Consequently, the velocity field shows good consistency between triple-pulse and dual-pulse measurements. The mean acceleration profile along the centerline of the jet is used as the ground truth for the verification of the triple-pulse PIV measurements of the acceleration fields. The instantaneous acceleration field of the jet is directly measured by triple-pulse PIV and presented. Accelerations up to 1,000 g's are measured in these experiments.
ContributorsDing, Liuyang (Author) / Adrian, Ronald J. (Thesis advisor) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2014
152797-Thumbnail Image.png
Description
There has been considerable advancement in the algae research field to move algae production for biofuels and bio-products forward to become commercially viable. However, there is one key element that humans cannot control, the natural externalities that impact production. An algae cultivation system is similar to agricultural crop farming practices.

There has been considerable advancement in the algae research field to move algae production for biofuels and bio-products forward to become commercially viable. However, there is one key element that humans cannot control, the natural externalities that impact production. An algae cultivation system is similar to agricultural crop farming practices. Algae are grown on an area of land for a certain time period with the aim of harvesting the biomass produced. One of the advantages of using algae biomass is that it can be used as a source of energy in the form of biofuels. Major advances in algae research and development practices have led to new knowledge about the remarkable potential of algae to serve as a sustainable source of biofuel. The challenge is to make the price of biofuels from algae cost-competitive with the price of petroleum-based fuels. The scope of this research was to design a concept for an automated system to control specific externalities and determine if integrating the system in an algae cultivation system could improve the algae biomass production process. This research required the installation and evaluation of an algae cultivation process, components selection and computer software programming for an automated system. The results from the automated system based on continuous real time monitored variables validated that the developed system contributes insights otherwise not detected from a manual measurement approach. The implications of this research may lead to technology that can be used as a base model to further improve algae cultivation systems.
ContributorsPuruhito, Emil (Author) / Sommerfeld, Milton (Thesis advisor) / Gintz, Jerry (Thesis advisor) / Alford, Eddie (Committee member) / Arizona State University (Publisher)
Created2014
152921-Thumbnail Image.png
Description
Small metallic parts of size less than 1mm, with features measured in tens of microns, with tolerances as small as 0.1 micron are in demand for the research in many fields such as electronics, optics, and biomedical engineering. Because of various drawbacks with non-mechanical micromanufacturing processes, micromilling has shown itself

Small metallic parts of size less than 1mm, with features measured in tens of microns, with tolerances as small as 0.1 micron are in demand for the research in many fields such as electronics, optics, and biomedical engineering. Because of various drawbacks with non-mechanical micromanufacturing processes, micromilling has shown itself to be an attractive alternative manufacturing method. Micromilling is a microscale manufacturing process that can be used to produce a wide range of small parts, including those that have complex 3-dimensional contours. Although the micromilling process is superficially similar to conventional-scale milling, the physical processes of micromilling are unique due to the scale effects. These scale effects occur due to unequal scaling of the parameters from the macroscale to the microscale milling. One key example of scale effects in micromilling process is a geometrical source of error known as chord error. The chord error limits the feedrate to a reduced value to produce the features within machining tolerances. In this research, it is hypothesized that the increase of chord error in micromilling can be alleviated by intelligent modification of the kinematic arrangement of the micromilling machine. Currently, all 3-axis micromilling machines are constructed with a Cartesian kinematic arrangement with three perpendicular linear axes. In this research, the cylindrical kinematic arrangement is introduced, and an analytical expression for the chord error for this arrangement is derived. The numerical simulations are performed to evaluate the chord errors for the cylindrical kinematic arrangement. It is found that cylindrical kinematic arrangement gives reduced chord error for some types of the desired toolpaths. Then, the kinematic redundancy is introduced to design a novel kinematic arrangement. Several desired toolpaths have been numerically simulated to evaluate the chord error for kinematically redundant arrangement. It is concluded that this arrangement gives up to 5 times reduced error for all the desired toolpaths considered, and allows significant gains in allowable feedrates.
ContributorsChukewad, Yogesh Madhavrao (Author) / SODEMANN, ANGELA A (Thesis advisor) / Davidson, Joseph K. (Thesis advisor) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2014
152841-Thumbnail Image.png
Description
Origami is an art transforming a flat sheet of paper into a sculpture. Among various types of origami, the focus is on a particular class called the `Rigid Origami' ("RO"). A Rigid Origami, unlike other forms, is not intended to be folded into fancy shapes. On the contrary, an RO

Origami is an art transforming a flat sheet of paper into a sculpture. Among various types of origami, the focus is on a particular class called the `Rigid Origami' ("RO"). A Rigid Origami, unlike other forms, is not intended to be folded into fancy shapes. On the contrary, an RO has a simple and a geometrically well-defined crease pattern and does not have curved/smudged faces. The folds can be carried out by a continuous motion in which, at each step, each face of the origami is completely flat. As a result, these planar faces experience very minimal strain due to loading. This property allows it to be used to fold surfaces made of rigid materials. Tapping into the geometrical properties of RO will open a new field of research with great practical utility. Analyzing each new RO pattern will require generating numerous prototypes; this is practically impossible to do, as it consumes a lot of time and material. The advantages of Finite Element Analysis
umerical modeling become very clear in this scenario. A new design concept may be modeled to determine its real world behavior under various load environments and may, therefore, be refined prior to the creation of drawings, when changes are inexpensive. Since an RO undergoes a non-local deformation when subjected to a disturbance, the usage of conventional FEA will not produce accurate results. A non-local element model was developed which can be used in conjunction with the finite element package ABAQUS, via its user-defined element (UEL). This model was tested on two RO patterns, namely Miura-Ori and Ron Resch, by carrying out basic simulations. There are many other interesting origami patterns, exhibiting different meta-material properties, yet to be explored. This Finite Element Approach equips researchers with necessary tools to study those options in great detail.
ContributorsKrishnaraju, Deepakshyam (Author) / Jiang, Dr. Hanqing (Thesis advisor) / Yu, Dr. Honyu (Committee member) / Mignolet, Dr. Marc (Committee member) / Arizona State University (Publisher)
Created2014
Description
This thesis seeks to further explore off-design point operation of gas turbines and to examine the capabilities of GasTurb 12 as a tool for off-design analysis. It is a continuation of previous thesis work which initially explored the capabilities of GasTurb 12. The research is conducted in order to: 1)

This thesis seeks to further explore off-design point operation of gas turbines and to examine the capabilities of GasTurb 12 as a tool for off-design analysis. It is a continuation of previous thesis work which initially explored the capabilities of GasTurb 12. The research is conducted in order to: 1) validate GasTurb 12 and, 2) predict off-design performance of the Garrett GTCP85-98D located at the Arizona State University Tempe campus. GasTurb 12 is validated as an off-design point tool by using the program to predict performance of an LM2500+ marine gas turbine. Haglind and Elmegaard (2009) published a paper detailing a second off-design point method and it includes the manufacturer's off-design point data for the LM2500+. GasTurb 12 is used to predict off-design point performance of the LM2500+ and compared to the manufacturer's data. The GasTurb 12 predictions show good correlation. Garrett has published specification data for the GTCP85-98D. This specification data is analyzed to determine the design point and to comment on off-design trends. Arizona State University GTCP85-98D off-design experimental data is evaluated. Trends presented in the data are commented on and explained. The trends match the expected behavior demonstrated in the specification data for the same gas turbine system. It was originally intended that a model of the GTCP85-98D be constructed in GasTurb 12 and used to predict off-design performance. The prediction would be compared to collected experimental data. This is not possible because the free version of GasTurb 12 used in this research does not have a module to model a single spool turboshaft. This module needs to be purchased for this analysis.
ContributorsMartinjako, Jeremy (Author) / Trimble, Steve (Thesis advisor) / Dahm, Werner (Committee member) / Middleton, James (Committee member) / Arizona State University (Publisher)
Created2014