Matching Items (19)
Filtering by

Clear all filters

152074-Thumbnail Image.png
Description
Locomotion of microorganisms is commonly observed in nature and some aspects of their motion can be replicated by synthetic motors. Synthetic motors rely on a variety of propulsion mechanisms including auto-diffusiophoresis, auto-electrophoresis, and bubble generation. Regardless of the source of the locomotion, the motion of any motor can be characterized

Locomotion of microorganisms is commonly observed in nature and some aspects of their motion can be replicated by synthetic motors. Synthetic motors rely on a variety of propulsion mechanisms including auto-diffusiophoresis, auto-electrophoresis, and bubble generation. Regardless of the source of the locomotion, the motion of any motor can be characterized by the translational and rotational velocity and effective diffusivity. In a uniform environment the long-time motion of a motor can be fully characterized by the effective diffusivity. In this work it is shown that when motors possess both translational and rotational velocity the motor transitions from a short-time diffusivity to a long-time diffusivity at a time of pi/w. The short-time diffusivities are two to three orders of magnitude larger than the diffusivity of a Brownian sphere of the same size, increase linearly with concentration, and scale as v^2/2w. The measured long-time diffusivities are five times lower than the short-time diffusivities, scale as v^2/{2Dr [1 + (w/Dr )^2]}, and exhibit a maximum as a function of concentration. The variation of a colloid's velocity and effective diffusivity to its local environment (e.g. fuel concentration) suggests that the motors can accumulate in a bounded system, analogous to biological chemokinesis. Chemokinesis of organisms is the non-uniform equilibrium concentration that arises from a bounded random walk of swimming organisms in a chemical concentration gradient. In non-swimming organisms we term this response diffusiokinesis. We show that particles that migrate only by Brownian thermal motion are capable of achieving non-uniform pseudo equilibrium distribution in a diffusivity gradient. The concentration is a result of a bounded random-walk process where at any given time a larger percentage of particles can be found in the regions of low diffusivity than in regions of high diffusivity. Individual particles are not trapped in any given region but at equilibrium the net flux between regions is zero. For Brownian particles the gradient in diffusivity is achieved by creating a viscosity gradient in a microfluidic device. The distribution of the particles is described by the Fokker-Planck equation for variable diffusivity. The strength of the probe concentration gradient is proportional to the strength of the diffusivity gradient and inversely proportional to the mean probe diffusivity in the channel in accordance with the no flux condition at steady state. This suggests that Brownian colloids, natural or synthetic, will concentrate in a bounded system in response to a gradient in diffusivity and that the magnitude of the response is proportional to the magnitude of the gradient in diffusivity divided by the mean diffusivity in the channel.
ContributorsMarine, Nathan Arasmus (Author) / Posner, Jonathan D (Thesis advisor) / Adrian, Ronald J (Committee member) / Frakes, David (Committee member) / Phelan, Patrick E (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
151532-Thumbnail Image.png
Description
Modern day gas turbine designers face the problem of hot mainstream gas ingestion into rotor-stator disk cavities. To counter this ingestion, seals are installed on the rotor and stator disk rims and purge air, bled off from the compressor, is injected into the cavities. It is desirable to reduce the

Modern day gas turbine designers face the problem of hot mainstream gas ingestion into rotor-stator disk cavities. To counter this ingestion, seals are installed on the rotor and stator disk rims and purge air, bled off from the compressor, is injected into the cavities. It is desirable to reduce the supply of purge air as this decreases the net power output as well as efficiency of the gas turbine. Since the purge air influences the disk cavity flow field and effectively the amount of ingestion, the aim of this work was to study the cavity velocity field experimentally using Particle Image Velocimetry (PIV). Experiments were carried out in a model single-stage axial flow turbine set-up that featured blades as well as vanes, with purge air supplied at the hub of the rotor-stator disk cavity. Along with the rotor and stator rim seals, an inner labyrinth seal was provided which split the disk cavity into a rim cavity and an inner cavity. First, static gage pressure distribution was measured to ensure that nominally steady flow conditions had been achieved. The PIV experiments were then performed to map the velocity field on the radial-tangential plane within the rim cavity at four axial locations. Instantaneous velocity maps obtained by PIV were analyzed sector-by-sector to understand the rim cavity flow field. It was observed that the tangential velocity dominated the cavity flow at low purge air flow rate, its dominance decreasing with increase in the purge air flow rate. Radially inboard of the rim cavity, negative radial velocity near the stator surface and positive radial velocity near the rotor surface indicated the presence of a recirculation region in the cavity whose radial extent increased with increase in the purge air flow rate. Qualitative flow streamline patterns are plotted within the rim cavity for different experimental conditions by combining the PIV map information with ingestion measurements within the cavity as reported in Thiagarajan (2013).
ContributorsPathak, Parag (Author) / Roy, Ramendra P (Thesis advisor) / Calhoun, Ronald (Committee member) / Lee, Taewoo (Committee member) / Arizona State University (Publisher)
Created2013
152502-Thumbnail Image.png
Description
Climate change has been one of the major issues of global economic and social concerns in the past decade. To quantitatively predict global climate change, the Intergovernmental Panel on Climate Change (IPCC) of the United Nations have organized a multi-national effort to use global atmosphere-ocean models to project anthropogenically induced

Climate change has been one of the major issues of global economic and social concerns in the past decade. To quantitatively predict global climate change, the Intergovernmental Panel on Climate Change (IPCC) of the United Nations have organized a multi-national effort to use global atmosphere-ocean models to project anthropogenically induced climate changes in the 21st century. The computer simulations performed with those models and archived by the Coupled Model Intercomparison Project - Phase 5 (CMIP5) form the most comprehensive quantitative basis for the prediction of global environmental changes on decadal-to-centennial time scales. While the CMIP5 archives have been widely used for policy making, the inherent biases in the models have not been systematically examined. The main objective of this study is to validate the CMIP5 simulations of the 20th century climate with observations to quantify the biases and uncertainties in state-of-the-art climate models. Specifically, this work focuses on three major features in the atmosphere: the jet streams over the North Pacific and Atlantic Oceans and the low level jet (LLJ) stream over central North America which affects the weather in the United States, and the near-surface wind field over North America which is relevant to energy applications. The errors in the model simulations of those features are systematically quantified and the uncertainties in future predictions are assessed for stakeholders to use in climate applications. Additional atmospheric model simulations are performed to determine the sources of the errors in climate models. The results reject a popular idea that the errors in the sea surface temperature due to an inaccurate ocean circulation contributes to the errors in major atmospheric jet streams.
ContributorsKulkarni, Sujay (Author) / Huang, Huei-Ping (Thesis advisor) / Calhoun, Ronald (Committee member) / Peet, Yulia (Committee member) / Arizona State University (Publisher)
Created2014
153123-Thumbnail Image.png
Description
Stereolithography files (STL) are widely used in diverse fields as a means of describing complex geometries through surface triangulations. The resulting stereolithography output is a result of either experimental measurements, or computer-aided design. Often times stereolithography outputs from experimental means are prone to noise, surface irregularities and holes in an

Stereolithography files (STL) are widely used in diverse fields as a means of describing complex geometries through surface triangulations. The resulting stereolithography output is a result of either experimental measurements, or computer-aided design. Often times stereolithography outputs from experimental means are prone to noise, surface irregularities and holes in an otherwise closed surface.

A general method for denoising and adaptively smoothing these dirty stereolithography files is proposed. Unlike existing means, this approach aims to smoothen the dirty surface representation by utilizing the well established levelset method. The level of smoothing and denoising can be set depending on a per-requirement basis by means of input parameters. Once the surface representation is smoothened as desired, it can be extracted as a standard levelset scalar isosurface.

The approach presented in this thesis is also coupled to a fully unstructured Cartesian mesh generation library with built-in localized adaptive mesh refinement (AMR) capabilities, thereby ensuring lower computational cost while also providing sufficient resolution. Future work will focus on implementing tetrahedral cuts to the base hexahedral mesh structure in order to extract a fully unstructured hexahedra-dominant mesh describing the STL geometry, which can be used for fluid flow simulations.
ContributorsKannan, Karthik (Author) / Herrmann, Marcus (Thesis advisor) / Peet, Yulia (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2014
150803-Thumbnail Image.png
Description
Structural features of canonical wall-bounded turbulent flows are described using several techniques, including proper orthogonal decomposition (POD). The canonical wall-bounded turbulent flows of channels, pipes, and flat-plate boundary layers include physics important to a wide variety of practical fluid flows with a minimum of geometric complications. Yet, significant questions remain

Structural features of canonical wall-bounded turbulent flows are described using several techniques, including proper orthogonal decomposition (POD). The canonical wall-bounded turbulent flows of channels, pipes, and flat-plate boundary layers include physics important to a wide variety of practical fluid flows with a minimum of geometric complications. Yet, significant questions remain for their turbulent motions' form, organization to compose very long motions, and relationship to vortical structures. POD extracts highly energetic structures from flow fields and is one tool to further understand the turbulence physics. A variety of direct numerical simulations provide velocity fields suitable for detailed analysis. Since POD modes require significant interpretation, this study begins with wall-normal, one-dimensional POD for a set of turbulent channel flows. Important features of the modes and their scaling are interpreted in light of flow physics, also leading to a method of synthesizing one-dimensional POD modes. Properties of a pipe flow simulation are then studied via several methods. The presence of very long streamwise motions is assessed using a number of statistical quantities, including energy spectra, which are compared to experiments. Further properties of energy spectra, including their relation to fictitious forces associated with mean Reynolds stress, are considered in depth. After reviewing salient features of turbulent structures previously observed in relevant experiments, structures in the pipe flow are examined in greater detail. A variety of methods reveal organization patterns of structures in instantaneous fields and their associated vortical structures. Properties of POD modes for a boundary layer flow are considered. Finally, very wide modes that occur when computing POD modes in all three canonical flows are compared. The results demonstrate that POD extracts structures relevant to characterizing wall-bounded turbulent flows. However, significant care is necessary in interpreting POD results, for which modes can be categorized according to their self-similarity. Additional analysis techniques reveal the organization of smaller motions in characteristic patterns to compose very long motions in pipe flows. The very large scale motions are observed to contribute large fractions of turbulent kinetic energy and Reynolds stress. The associated vortical structures possess characteristics of hairpins, but are commonly distorted from pristine hairpin geometries.
ContributorsBaltzer, Jon Ronald (Author) / Adrian, Ronald J (Thesis advisor) / Calhoun, Ronald (Committee member) / Gelb, Anne (Committee member) / Herrmann, Marcus (Committee member) / Squires, Kyle D (Committee member) / Arizona State University (Publisher)
Created2012
Description
Over the past three decades, particle image velocimetry (PIV) has been continuously growing to become an informative and robust experimental tool for fluid mechanics research. Compared to the early stage of PIV development, the dynamic range of PIV has been improved by about an order of magnitude (Adrian, 2005; Westerweel

Over the past three decades, particle image velocimetry (PIV) has been continuously growing to become an informative and robust experimental tool for fluid mechanics research. Compared to the early stage of PIV development, the dynamic range of PIV has been improved by about an order of magnitude (Adrian, 2005; Westerweel et al., 2013). Further improvement requires a breakthrough innovation, which constitutes the main motivation of this dissertation. N-pulse particle image velocimetry-accelerometry (N-pulse PIVA, where N>=3) is a promising technique to this regard. It employs bursts of N pulses to gain advantages in both spatial and temporal resolution. The performance improvement by N-pulse PIVA is studied using particle tracking (i.e. N-pulse PTVA), and it is shown that an enhancement of at least another order of magnitude is achievable. Furthermore, the capability of N-pulse PIVA to measure unsteady acceleration and force is demonstrated in the context of an oscillating cylinder interacting with surrounding fluid. The cylinder motion, the fluid velocity and acceleration, and the fluid force exerted on the cylinder are successfully measured. On the other hand, a key issue of multi-camera registration for the implementation of N-pulse PIVA is addressed with an accuracy of 0.001 pixel. Subsequently, two applications of N-pulse PTVA to complex flows and turbulence are presented. A novel 8-pulse PTVA analysis was developed and validated to accurately resolve particle unsteady drag in post-shock flows. It is found that the particle drag is substantially elevated from the standard drag due to flow unsteadiness, and a new drag correlation incorporating particle Reynolds number and unsteadiness is desired upon removal of the uncertainty arising from non-uniform particle size. Next, the estimation of turbulence statistics utilizes the ensemble average of 4-pulse PTV data within a small domain of an optimally determined size. The estimation of mean velocity, mean velocity gradient and isotropic dissipation rate are presented and discussed by means of synthetic turbulence, as well as a tomographic measurement of turbulent boundary layer. The results indicate the superior capability of the N-pulse PTV based method to extract high-spatial-resolution high-accuracy turbulence statistics.
ContributorsDing, Liuyang (Author) / Adrian, Ronald J (Thesis advisor) / Frakes, David (Committee member) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Peet, Yulia (Committee member) / Arizona State University (Publisher)
Created2018
157495-Thumbnail Image.png
Description
Lidar has demonstrated its utility in meteorological studies, wind resource assessment, and wind farm control. More recently, lidar has gained widespread attention for autonomous vehicles.

The first part of the dissertation begins with an application of a coherent Doppler lidar to wind gust characterization for wind farm control. This application focuses

Lidar has demonstrated its utility in meteorological studies, wind resource assessment, and wind farm control. More recently, lidar has gained widespread attention for autonomous vehicles.

The first part of the dissertation begins with an application of a coherent Doppler lidar to wind gust characterization for wind farm control. This application focuses on wind gusts on a scale from 100 m to 1000 m. A detecting and tracking algorithm is proposed to extract gusts from a wind field and track their movement. The algorithm was implemented for a three-hour, two-dimensional wind field retrieved from the measurements of a coherent Doppler lidar. The Gaussian distribution of the gust spanwise deviation from the streamline was demonstrated. Size dependency of gust deviations is discussed. A prediction model estimating the impact of gusts with respect to arrival time and the probability of arrival locations is introduced. The prediction model was applied to a virtual wind turbine array, and estimates are given for which wind turbines would be impacted.

The second part of this dissertation describes a Time-of-Flight lidar simulation. The lidar simulation includes a laser source module, a propagation module, a receiver module, and a timing module. A two-dimensional pulse model is introduced in the laser source module. The sampling rate for the pulse model is explored. The propagation module takes accounts of beam divergence, target characteristics, atmosphere, and optics. The receiver module contains models of noise and analog filters in a lidar receiver. The effect of analog filters on the signal behavior was investigated. The timing module includes a Time-to-Digital Converter (TDC) module and an Analog-to-Digital converter (ADC) module. In the TDC module, several walk-error compensation methods for leading-edge detection and multiple timing algorithms were modeled and tested on simulated signals. In the ADC module, a benchmark (BM) timing algorithm is proposed. A Neyman-Pearson (NP) detector was implemented in the time domain and frequency domain (fast Fourier transform (FFT) approach). The FFT approach with frequency-domain zero-paddings improves the timing resolution. The BM algorithm was tested on simulated signals, and the NP detector was evaluated on both simulated signals and measurements from a prototype lidar (Bhaskaran, 2018).
ContributorsZhou, Kai (Author) / Calhoun, Ronald (Thesis advisor) / Chen, Kangping (Committee member) / Tang, Wenbo (Committee member) / Peet, Yulia (Committee member) / Krishnamurthy, Raghavendra (Committee member) / Arizona State University (Publisher)
Created2019
Description
The goal of this paper was to do an analysis of two-dimensional unsplit mass and momentum conserving Finite Volume Methods for Advection for Volume of Fluid Fields with interfaces and validating their rates of convergence. Specifically three unsplit transport methods and one split transport method were amalgamated individually with four

The goal of this paper was to do an analysis of two-dimensional unsplit mass and momentum conserving Finite Volume Methods for Advection for Volume of Fluid Fields with interfaces and validating their rates of convergence. Specifically three unsplit transport methods and one split transport method were amalgamated individually with four Piece-wise Linear Reconstruction Schemes (PLIC) i.e. Unsplit Eulerian Advection (UEA) by Owkes and Desjardins (2014), Unsplit Lagrangian Advection (ULA) by Yang et al. (2010), Split Lagrangian Advection (SLA) by Scardovelli and Zaleski (2003) and Unsplit Averaged Eulerian-Lagrangian Advection (UAELA) with two Finite Difference Methods by Parker and Youngs (1992) and two Error Minimization Methods by Pilliod Jr and Puckett (2004). The observed order of accuracy was first order in all cases except when unsplit methods and error minimization methods were used consecutively in each iteration, which resulted in second-order accuracy on the shape error convergence. The Averaged Unsplit Eulerian-Lagrangian Advection (AUELA) did produce first-order accuracy but that was due to a temporal error in the numerical setup. The main unsplit methods, Unsplit Eulerian Advection (UEA) and Unsplit Lagrangian Advection (ULA), preserve mass and momentum and require geometric clipping to solve two-phase fluid flows. The Unsplit Lagrangian Advection (ULA) can allow for small divergence in the velocity field perhaps saving time on the iterative solver of the variable coefficient Poisson System.
ContributorsAnsari, Adil (M.S.) (Author) / Herrmann, Marcus (Thesis advisor) / Peet, Yulia (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2019
Description
Rapid expansion of dense beds of fine, spherical particles subjected to rapid depressurization is studied in a vertical shock tube. As the particle bed is unloaded, a high-speed video camera captures the dramatic evolution of the particle bed structure. Pressure transducers are used to measure the dynamic pressure changes during

Rapid expansion of dense beds of fine, spherical particles subjected to rapid depressurization is studied in a vertical shock tube. As the particle bed is unloaded, a high-speed video camera captures the dramatic evolution of the particle bed structure. Pressure transducers are used to measure the dynamic pressure changes during the particle bed expansion process. Image processing, signal processing, and Particle Image Velocimetry techniques, are used to examine the relationships between particle size, initial bed height, bed expansion rate, and gas velocities.

The gas-particle interface and the particle bed as a whole expand and evolve in stages. First, the bed swells nearly homogeneously for a very brief period of time (< 2ms). Shortly afterward, the interface begins to develop instabilities as it continues to rise, with particles nearest the wall rising more quickly. Meanwhile, the bed fractures into layers and then breaks down further into cellular-like structures. The rate at which the structural evolution occurs is shown to be dependent on particle size. Additionally, the rate of the overall bed expansion is shown to be dependent on particle size and initial bed height.

Taller particle beds and beds composed of smaller-diameter particles are found to be associated with faster bed-expansion rates, as measured by the velocity of the gas-particle interface. However, the expansion wave travels more slowly through these same beds. It was also found that higher gas velocities above the the gas-particle interface measured \textit{via} Particle Image Velocimetry or PIV, were associated with particle beds composed of larger-diameter particles. The gas dilation between the shocktube diaphragm and the particle bed interface is more dramatic when the distance between the gas-particle interface and the diaphragm is decreased-as is the case for taller beds.

To further elucidate the complexities of this multiphase compressible flow, simple OpenFOAM (Weller, 1998) simulations of the shocktube experiment were performed and compared to bed expansion rates, pressure fluctuations, and gas velocities. In all cases, the trends and relationships between bed height, particle diameter, with expansion rates, pressure fluctuations and gas velocities matched well between experiments and simulations. In most cases, the experimentally-measured bed rise rates and the simulated bed rise rates matched reasonably well in early times. The trends and overall values of the pressure fluctuations and gas velocities matched well between the experiments and simulations; shedding light on the effects each parameter has on the overall flow.
ContributorsZunino, Heather (Author) / Adrian, Ronald J (Thesis advisor) / Clarke, Amanda (Committee member) / Chen, Kangping (Committee member) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2019
153772-Thumbnail Image.png
Description
Development of renewable energy solutions has become a major interest among environmental organizations and governments around the world due to an increase in energy consumption and global warming. One fast growing renewable energy solution is the application of wind energy in cities. To qualitative and quantitative predict wind turbine performance

Development of renewable energy solutions has become a major interest among environmental organizations and governments around the world due to an increase in energy consumption and global warming. One fast growing renewable energy solution is the application of wind energy in cities. To qualitative and quantitative predict wind turbine performance in urban areas, CFD simulation is performed on real-life urban geometry and wind velocity profiles are evaluated. Two geometries in Arizona is selected in this thesis to demonstrate the influence of building heights; one of the simulation models, ASU campus, is relatively low rise and without significant tall buildings; the other model, the downtown phoenix model, are high-rise and with greater building height difference. The content of this thesis focuses on using RANS computational fluid dynamics approach to simulate wind acceleration phenomenon in two complex geometries, ASU campus and Phoenix downtown model. Additionally, acceleration ratio and locations are predicted, the results are then used to calculate the best location for small wind turbine installments.
ContributorsYing, Xiaoyan (Author) / Huang, Huei-Ping (Thesis advisor) / Peet, Yulia (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2015