Matching Items (3)
Filtering by

Clear all filters

Description
The study of the mechanical behavior of nanocrystalline metals using microelectromechanical systems (MEMS) devices lies at the intersection of nanotechnology, mechanical engineering and material science. The extremely small grains that make up nanocrystalline metals lead to higher strength but lower ductility as compared to bulk metals. Effects of strain-rate dependence

The study of the mechanical behavior of nanocrystalline metals using microelectromechanical systems (MEMS) devices lies at the intersection of nanotechnology, mechanical engineering and material science. The extremely small grains that make up nanocrystalline metals lead to higher strength but lower ductility as compared to bulk metals. Effects of strain-rate dependence on the mechanical behavior of nanocrystalline metals are explored. Knowing the strain rate dependence of mechanical properties would enable optimization of material selection for different applications and lead to lighter structural components and enhanced sustainability.
ContributorsHall, Andrea Paulette (Author) / Rajagopalan, Jagannathan (Thesis director) / Liao, Yabin (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
135266-Thumbnail Image.png
Description
Pseudo-steady state (PSS) flow is a dominant time-dependent flow regime during constant rate production from a closed reservoir. Recently Chen (2016) has obtained an exact analytical solution for the PSS flow of a fully-penetrated fractured vertical well with finite conductivity in an elliptical drainage area. The availability of this analytical

Pseudo-steady state (PSS) flow is a dominant time-dependent flow regime during constant rate production from a closed reservoir. Recently Chen (2016) has obtained an exact analytical solution for the PSS flow of a fully-penetrated fractured vertical well with finite conductivity in an elliptical drainage area. The availability of this analytical solution shortens the computational time required for such a solution by several orders of magnitude. This paper correlates the PSS flow of a fully-penetrated fractured vertical well in square drainage areas to Chen’s solution for an elliptical drainage area using shape factors. Specifically such a shape factor is established by equating the dimensionless productivity index of the PSS flow in a square domain to that in an elliptical domain of identical area. The shape factor was dependent on the proppant number and fracture penetration ratio. Productivity index data for fractured wells with finite conductivity in square drainage area and no skin from Romero et al. (2003) was compared to Chen’s solution assuming equivalent drainage areas and identical proppant numbers, with the penetration ratio as a parameter. A non-linear multi-variable regression analysis results in a unified shape factor function with a correlation coefficient of 0.80 and a minimized sum of squared error of 36.1. The achieved shape factor allows the analytical solution for PSS flow of fractured well in an elliptical drainage area to be applied to square drainage areas. This generalization of the PSS flow solution is of practical significance in fracture design optimization and production rate decline analysis. Future recommendations including testing the accuracy of the shape factor in predictions of proppant numbers not used in analysis using COMSOL™, and increasing the dataset pool to increase the model accuracy.
ContributorsSharma, Ankush (Author) / Chen, Kangping (Thesis director) / Liao, Yabin (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134408-Thumbnail Image.png
Description
Pseudo-steady state (PSS) flow is a dominant time-dependent flow regime during constant rate production from a closed reservoir. Using Chen's (2016) exact analytical solution for the PSS flow of a fully-penetrated fractured vertical well with finite conductivity in an elliptical drainage area, the computational time required to solve for the

Pseudo-steady state (PSS) flow is a dominant time-dependent flow regime during constant rate production from a closed reservoir. Using Chen's (2016) exact analytical solution for the PSS flow of a fully-penetrated fractured vertical well with finite conductivity in an elliptical drainage area, the computational time required to solve for the PSS constant b_D,PSS is greatly reduced. This constant is the inverse of the productivity index, J_D,PSS, which is often used in modern fracture design optimization. This paper correlates the PSS flow of a fully-penetrated fractured vertical well in triangular drainage areas to Chen's solution for an elliptical drainage area using shape factors. Numerical solutions for the PSS constant are created using COMSOL, which uses a 2D model of the fractured reservoir to output time and pressure data. For equivalent reservoir properties, the numerical data for the triangular reservoir yields a PSS constant that can be directly compared to the PSS constant obtained using Chen's solution. Lack of access to the Subsurface Flow Module of COMSOL greatly limited the number of simulations that could be run, thus more simulations would significantly improve the accuracy and applicability of the triangular shape factor by making it a function of the penetration ratio through nonlinear regression methods.
ContributorsLight, Christopher Ting-Yu (Author) / Chen, Kangping (Thesis director) / Liao, Yabin (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05