Matching Items (55)
Filtering by

Clear all filters

171814-Thumbnail Image.png
Description
Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires an improved understanding of the thermomechanical response of advanced materials

Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires an improved understanding of the thermomechanical response of advanced materials under service conditions. This dissertation provides fundamental investigations of several advanced materials: thermoset polymers, a common matrix material for fiber-reinforced composites and nanocomposites; aluminum alloy 7075-T6 (AA7075-T6), a high-performance aerospace material; and ceramic matrix composites (CMCs), an advanced composite for extreme-temperature applications. To understand matrix interactions with various interfaces and nanoinclusions at their fundamental scale, the properties of thermoset polymers are studied at the atomistic scale. An improved proximity-based molecular dynamics (MD) technique for modeling the crosslinking of thermoset polymers is carefully established, enabling realistic curing simulations through its ability to dynamically and probabilistically perform complex topology transformations. The proximity-based MD curing methodology is then used to explore damage initiation and the local anisotropic evolution of mechanical properties in thermoset polymers under uniaxial tension with an emphasis on changes in stiffness through a series of tensile loading, unloading, and reloading experiments. Aluminum alloys in aerospace applications often require a fatigue life of over 109 cycles, which is well over the number of cycles that can be practically tested using conventional fatigue testing equipment. In order to study these high-life regimes, a detailed ultrasonic cycle fatigue study is presented for AA7075-T6 under fully reversed tension-compression loading. The geometric sensitivity, frequency effects, size effects, surface roughness effects, and the corresponding failure mechanisms for ultrasonic fatigue across different fatigue regimes are investigated. Finally, because CMCs are utilized in extreme environments, oxidation plays an important role in their degradation. A multiphysics modeling methodology is thus developed to address the complex coupling between oxidation, mechanical stress, and oxygen diffusion in heterogeneous carbon fiber-reinforced CMC microstructures.
ContributorsSchichtel, Jacob (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Ghoshal, Anindya (Committee member) / Huang, Huei-Ping (Committee member) / Jiao, Yang (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2022
171815-Thumbnail Image.png
Description
Advanced fibrous composite materials exhibit outstanding thermomechanical performance under extreme environments, which make them ideal for structural components that are used in a wide range of aerospace, nuclear, and defense applications. The integrity and residual useful life of these components, however, are strongly influenced by their inherent material flaws and

Advanced fibrous composite materials exhibit outstanding thermomechanical performance under extreme environments, which make them ideal for structural components that are used in a wide range of aerospace, nuclear, and defense applications. The integrity and residual useful life of these components, however, are strongly influenced by their inherent material flaws and defects resulting from the complex fabrication processes. These defects exist across multiple length scales and govern several scale-dependent inelastic deformation mechanisms of each of the constituents as well as their composite damage anisotropy. Tailoring structural components for optimal performance requires addressing the knowledge gap regarding the microstructural material morphology that governs the structural scale damage and failure response. Therefore, there is a need for a high-fidelity multiscale modeling framework and scale-specific in-situ experimental characterization that can capture complex inelastic mechanisms, including damage initiation and propagation across multiple length scales. This dissertation presents a novel multiscale computational framework that accounts for experimental information pertinent to microstructure morphology and architectural variabilities to investigate the response of ceramic matrix composites (CMCs) with manufacturing-induced defects. First, a three-dimensional orthotropic viscoplasticity creep formulation is developed to capture the complex temperature- and time-dependent constituent load transfer mechanisms in different CMC material systems. The framework also accounts for a reformulated fracture mechanics-informed matrix damage model and the Curtin progressive fiber damage model to capture the complex scale-dependent damage and failure mechanisms through crack kinetics and porosity growth. Next, in-situ experiments using digital image correlation (DIC) are performed to capture the damage and failure mechanisms in CMCs and to validate the high-fidelity modeling results. The dissertation also presents an exhaustive experimental investigation into the effects of temperature and manufacturing-induced defects on toughened epoxy adhesives and hybrid composite-metallic bonded joints. Nondestructive evaluation techniques are utilized to characterize the inherent defects morphology of the bulk adhesives and bonded interface. This is followed by quasi-static tensile tests conducted at extreme hot and cold temperature conditions. The damage mechanisms and failure modes are investigated using in-situ DIC and a high-resolution camera. The information from the morphology characterization studies is used to reconstruct high-fidelity geometries of the test specimens for finite element analysis.
ContributorsKhafagy, Khaled Hassan Abdo (Author) / Chattopadhyay, Aditi (Thesis advisor) / Fard, Masoud Y. (Committee member) / Milcarek, Ryan (Committee member) / Stoumbos, Tom (Committee member) / Borkowski, Luke (Committee member) / Arizona State University (Publisher)
Created2022
189290-Thumbnail Image.png
Description
In this research, the chemical and mineralogical compositions, physical and mechanical properties, and failure mechanisms of two ordinary chondrite (OCs) meteorites Aba Panu (L3) and Viñales (L6), and the iron meteorite called Gibeon (IVA) were studied. OCs are dominated by anhydrous silicates with lesser amounts of sulfides and native Fe-Ni

In this research, the chemical and mineralogical compositions, physical and mechanical properties, and failure mechanisms of two ordinary chondrite (OCs) meteorites Aba Panu (L3) and Viñales (L6), and the iron meteorite called Gibeon (IVA) were studied. OCs are dominated by anhydrous silicates with lesser amounts of sulfides and native Fe-Ni metals, while Gibeon is primarily composed of Fe-Ni metals with scattered inclusions of graphite and troilite. The OCs were investigated to understand their response to compressive loading, using a three-dimensional (3-D) Digital Image Correlation (DIC) technique to measure full-field deformation and strain during compression. The DIC data were also used to identify the effects of mineralogical and structural heterogeneity on crack formation and growth. Even though Aba Panu and Viñales are mineralogically similar and are both classified as L ordinary chondrites, they exhibit differences in compressive strengths due to variations in chemical compositions, microstructure, and the presence of cracks and shock veins. DIC data of Aba Panu and Viñales show a brittle failure mechanism, consistent with the crack formation and growth from pre-existing microcracks and porosity. In contrast, the Fe-Ni phases of the Gibeon meteorite deform plastically without rupture during compression, whereas during tension, plastic deformations followed by necking lead to final failure. The Gibeon DIC results showed strain concentration in the tensile gauge region along the sample edge, resulting in the initiation of new damage surfaces that propagated perpendicular to the loading direction. Finally, an in-situ low-temperature testing method of iron meteorites was developed to study the response of their unique microstructure and failure mechanism.
ContributorsRabbi, Md Fazle (Author) / Chattopadhyay, Aditi (Thesis advisor) / Garvie, Laurence A.J. (Thesis advisor) / Liu, Yongming (Committee member) / Fard, Masoud Yekani (Committee member) / Cotto-Figueroa, Desiree (Committee member) / Arizona State University (Publisher)
Created2023
157404-Thumbnail Image.png
Description
This thesis presents the design and testing of a soft robotic device for water utility pipeline inspection. The preliminary findings of this new approach to conventional methods of pipe inspection demonstrate that a soft inflatable robot can successfully traverse the interior space of a range of diameter pipes using pneumatic

This thesis presents the design and testing of a soft robotic device for water utility pipeline inspection. The preliminary findings of this new approach to conventional methods of pipe inspection demonstrate that a soft inflatable robot can successfully traverse the interior space of a range of diameter pipes using pneumatic and without the need to adjust rigid, mechanical components. The robot utilizes inflatable soft actuators with an adjustable radius which, when pressurized, can provide a radial force, effectively anchoring the device in place. Additional soft inflatable actuators translate forces along the center axis of the device which creates forward locomotion when used in conjunction with the radial actuation. Furthermore, a bio-inspired control algorithm for locomotion allows the robot to maneuver through a pipe by mimicking the peristaltic gait of an inchworm. This thesis provides an examination and evaluation of the structure and behavior of the inflatable actuators through computational modeling of the material and design, as well as the experimental data of the forces and displacements generated by the actuators. The theoretical results are contrasted with/against experimental data utilizing a physical prototype of the soft robot. The design is anticipated to enable compliant robots to conform to the space offered to them and overcome occlusions from accumulated solids found in pipes. The intent of the device is to be used for inspecting existing pipelines owned and operated by Salt River Project, a Phoenix-area water and electricity utility provider.
ContributorsAdams, Wade Silas (Author) / Aukes, Daniel (Thesis advisor) / Sugar, Thomas (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2019
158250-Thumbnail Image.png
Description
Electrostatic Discharge (ESD) is a unique issue in the electronics industry that can cause failures of electrical components and complete electronic systems. There is an entire industry that is focused on developing ESD compliant tooling using traditional manufacturing methods. This research work evaluates the feasibility to fabricate a

Electrostatic Discharge (ESD) is a unique issue in the electronics industry that can cause failures of electrical components and complete electronic systems. There is an entire industry that is focused on developing ESD compliant tooling using traditional manufacturing methods. This research work evaluates the feasibility to fabricate a PEEK-Carbon Nanotube composite filament for Fused Filament Fabrication (FFF) Additive Manufacturing that is ESD compliant. In addition, it demonstrates that the FFF process can be used to print tools with the required accuracy, ESD compliance and mechanical properties necessary for the electronics industry at a low rate production level. Current Additive Manufacturing technology can print high temperature polymers, such as PEEK, with the required mechanical properties but they are not ESD compliant and require post processing to create a product that is. There has been some research conducted using mixed multi-wall and single wall carbon nanotubes in a PEEK polymers, which improves mechanical properties while reducing bulk resistance to the levels required to be ESD compliant. This previous research has been used to develop a PEEK-CNT polymer matrix for the Fused Filament Fabrication additive manufacturing process
ContributorsChurchwell, Raymond L (Author) / Sugar, Thomas (Thesis advisor) / Rogers, Bradley (Committee member) / Morrell, Darryl (Committee member) / Arizona State University (Publisher)
Created2020
189365-Thumbnail Image.png
Description
While wearable soft robots have successfully addressed many inherent design limitations faced by wearable rigid robots, they possess a unique set of challenges due to their soft and compliant nature. Some of these challenges are present in the sensing, modeling, control and evaluation of wearable soft robots. Machine learning algorithms

While wearable soft robots have successfully addressed many inherent design limitations faced by wearable rigid robots, they possess a unique set of challenges due to their soft and compliant nature. Some of these challenges are present in the sensing, modeling, control and evaluation of wearable soft robots. Machine learning algorithms have shown promising results for sensor fusion with wearable robots, however, they require extensive data to train models for different users and experimental conditions. Modeling soft sensors and actuators require characterizing non-linearity and hysteresis, which complicates deriving an analytical model. Experimental characterization can capture the characteristics of non-linearity and hysteresis but requires developing a synthesized model for real-time control. Controllers for wearable soft robots must be robust to compensate for unknown disturbances that arise from the soft robot and its interaction with the user. Since developing dynamic models for soft robots is complex, inaccuracies that arise from the unmodeled dynamics lead to significant disturbances that the controller needs to compensate for. In addition, obtaining a physical model of the human-robot interaction is complex due to unknown human dynamics during walking. Finally, the performance of soft robots for wearable applications requires extensive experimental evaluation to analyze the benefits for the user. To address these challenges, this dissertation focuses on the sensing, modeling, control and evaluation of soft robots for wearable applications. A model-based sensor fusion algorithm is proposed to improve the estimation of human joint kinematics, with a soft flexible robot that requires compact and lightweight sensors. To overcome limitations with rigid sensors, an inflatable soft haptic sensor is developed to enable gait sensing and haptic feedback. Through experimental characterization, a mathematical model is derived to quantify the user's ground reaction forces and the delivered haptic force. Lastly, the performance of a wearable soft exosuit in assisting human users during lifting tasks is evaluated, and the benefits obtained from the soft robot assistance are analyzed.
ContributorsQuiñones Yumbla, Emiliano (Author) / Zhang, Wenlong (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamid (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2023
157994-Thumbnail Image.png
Description
This dissertation aimed to evaluate the effectiveness and drawbacks of promising fall prevention strategies in individuals with stroke by rigorously analyzing the biomechanics of laboratory falls and compensatory movements required to prevent a fall. Ankle-foot-orthoses (AFOs) and functional electrical stimulators (FESs) are commonly prescribed to treat foot drop. Despite well-established

This dissertation aimed to evaluate the effectiveness and drawbacks of promising fall prevention strategies in individuals with stroke by rigorously analyzing the biomechanics of laboratory falls and compensatory movements required to prevent a fall. Ankle-foot-orthoses (AFOs) and functional electrical stimulators (FESs) are commonly prescribed to treat foot drop. Despite well-established positive impacts of AFOs and FES devices on balance and gait, AFO and FES users fall at a high rate. In chapter 2 (as a preliminary study), solely mechanical impacts of a semi-rigid AFO on the compensatory stepping response of young healthy individuals following trip-like treadmill perturbations were evaluated. It was found that a semi-rigid AFO on the stepping leg diminished the propulsive impulse of the compensatory step which led to decreased trunk movement control, shorter step length, and reduced center of mass (COM) stability. These results highlight the critical role of plantarflexors in generating an effective compensatory stepping response. In chapter 3, the underlying biomechanical mechanisms leading to high fall risk in long-term AFO and FES users with chronic stroke were studied. It was found that AFO and FES users fall more than Non-users because they have a more impaired lower limb that is not fully addressed by AFO/FES, therefore leading to a more impaired compensatory stepping response characterized by increased inability to generate a compensatory step with paretic leg and decreased trunk movement control. An ideal future AFO that provides dorsiflexion assistance during the swing phase and plantarflexion assistance during the push-off phase of gait is suggested to enhance the compensatory stepping response and reduce more falls. In chapter 4, the effects of a single-session trip-specific training on the compensatory stepping response of individuals with stroke were evaluated. Trunk movement control was improved after a single session of training suggesting that this type of training is a viable option to enhance compensatory stepping response and reduce falls in individuals with stroke. Finally, a future powered AFO with plantarflexion assistance complemented by a trip-specific training program is suggested to enhance the compensatory stepping response and decrease falls in individuals with stroke.
ContributorsNevisipour, Masood (Author) / Honeycutt, Claire (Thesis advisor) / Sugar, Thomas (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Abbas, James (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2019
158710-Thumbnail Image.png
Description
Information exists in various forms and a better utilization of the available information can benefit the system awareness and response predictions. The focus of this dissertation is on the fusion of different types of information using Bayesian-Entropy method. The Maximum Entropy method in information theory introduces a unique way of

Information exists in various forms and a better utilization of the available information can benefit the system awareness and response predictions. The focus of this dissertation is on the fusion of different types of information using Bayesian-Entropy method. The Maximum Entropy method in information theory introduces a unique way of handling information in the form of constraints. The Bayesian-Entropy (BE) principle is proposed to integrate the Bayes’ theorem and Maximum Entropy method to encode extra information. The posterior distribution in Bayesian-Entropy method has a Bayesian part to handle point observation data, and an Entropy part that encodes constraints, such as statistical moment information, range information and general function between variables. The proposed method is then extended to its network format as Bayesian Entropy Network (BEN), which serves as a generalized information fusion tool for diagnostics, prognostics, and surrogate modeling.

The proposed BEN is demonstrated and validated with extensive engineering applications. The BEN method is first demonstrated for diagnostics of gas pipelines and metal/composite plates for damage diagnostics. Both empirical knowledge and physics model are integrated with direct observations to improve the accuracy for diagnostics and to reduce the training samples. Next, the BEN is demonstrated in prognostics and safety assessment in air traffic management system. Various information types, such as human concepts, variable correlation functions, physical constraints, and tendency data, are fused in BEN to enhance the safety assessment and risk prediction in the National Airspace System (NAS). Following this, the BE principle is applied in surrogate modeling. Multiple algorithms are proposed based on different type of information encoding, such as Bayesian-Entropy Linear Regression (BELR), Bayesian-Entropy Semiparametric Gaussian Process (BESGP), and Bayesian-Entropy Gaussian Process (BEGP) are demonstrated with numerical toy problems and practical engineering analysis. The results show that the major benefits are the superior prediction/extrapolation performance and significant reduction of training samples by using additional physics/knowledge as constraints. The proposed BEN offers a systematic and rigorous way to incorporate various information sources. Several major conclusions are drawn based on the proposed study.
ContributorsWang, Yuhao (Author) / Liu, Yongming (Thesis advisor) / Chattopadhyay, Aditi (Committee member) / Mignolet, Marc (Committee member) / Yan, Hao (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2020
Description
Bicycles and motorcycles offer maneuverability, energy efficiency and acceleration that four wheeled vehicles cannot offer given similar budget for. Two wheeled vehicles have drastically different dynamics from four wheeled vehicles due to their instability and gyroscopic effect from their wheels.

This thesis focuses on self-stabilization of a motorcycle using an

Bicycles and motorcycles offer maneuverability, energy efficiency and acceleration that four wheeled vehicles cannot offer given similar budget for. Two wheeled vehicles have drastically different dynamics from four wheeled vehicles due to their instability and gyroscopic effect from their wheels.

This thesis focuses on self-stabilization of a motorcycle using an active control momentum gyroscope (CMG) and validation of this multi-degree-of-freedom system’s mathematical model. Physical platform was created to mimic the simulation as accurately as possible and all components used were justified. This process involves derivation of a 3 Degree-of-Freedom (DOF) system’s forward kinematics and its Jacobian matrix, simulation analysis of different controller algorithms, setting the system and subsystem specifications, and real system experimentation and data analysis.

A Jacobian matrix was used to calculate accurately decomposed resultant angular velocities which are used to create the dynamics model of the system torque using the Euler-Lagrange method. This produces a nonlinear second order differential equation that is modeled using MATLAB/Simulink. PID, and cascaded feedback loop are tested in this Simulink model. Cascaded feedback loop shows most promises in the simulation analysis. Therefore, system specifications are calculated according to the data produced by this controller method. The model validation is executed using the Vicon motion capture system which captured the roll angle of the motorcycle. This work contributes to creating a set of procedures for creating a validated dynamic model for a CMG stabilized motorcycle which can be used to create variants of other self-stabilizing motorcycle system.
ContributorsMoon, Hansol (Author) / Zhang, Wenlong (Thesis advisor) / Frank, Daniel (Committee member) / Delp, Deana (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2020
158494-Thumbnail Image.png
Description
The human ankle is a vital joint in the lower limb of the human body. As the point of interaction between the human neuromuscular system and the physical world, the ankle plays important role in lower extremity functions including postural balance and locomotion . Accurate characterization of ankle mechanics in

The human ankle is a vital joint in the lower limb of the human body. As the point of interaction between the human neuromuscular system and the physical world, the ankle plays important role in lower extremity functions including postural balance and locomotion . Accurate characterization of ankle mechanics in lower extremity function is essential not just to advance the design and control of robots physically interacting with the human lower extremities but also in rehabilitation of humans suffering from neurodegenerative disorders.

In order to characterize the ankle mechanics and understand the underlying mechanisms that influence the neuromuscular properties of the ankle, a novel multi-axial robotic platform was developed. The robotic platform is capable of simulating various haptic environments and transiently perturbing the ankle to analyze the neuromechanics of the ankle, specifically the ankle impedance. Humans modulate ankle impedance to perform various tasks of the lower limb. The robotic platform is used to analyze the modulation of ankle impedance during postural balance and locomotion on various haptic environments. Further, various factors that influence modulation of ankle impedance were identified. Using the factors identified during environment dependent impedance modulation studies, the quantitative relationship between these factors, namely the muscle activation of major ankle muscles, the weight loading on ankle and the torque generation at the ankle was analyzed during postural balance and locomotion. A universal neuromuscular model of the ankle that quantitatively relates ankle stiffness, the major component of ankle impedance, to these factors was developed.

This neuromuscular model is then used as a basis to study the alterations caused in ankle behavior due to neurodegenerative disorders such as Multiple Sclerosis and Stroke. Pilot studies to validate the analysis of altered ankle behavior and demonstrate the effectiveness of robotic rehabilitation protocols in addressing the altered ankle behavior were performed. The pilot studies demonstrate that the altered ankle mechanics can be quantified in the affected populations and correlate with the observed adverse effects of the disability. Further, robotic rehabilitation protocols improve ankle control in affected populations as seen through functional improvements in postural balance and locomotion, validating the neuromuscular approach for rehabilitation.
ContributorsNalam, Varun (Author) / Lee, Hyunglae (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Santello, Marco (Committee member) / Sugar, Thomas (Committee member) / Lockhart, Thurmon (Committee member) / Arizona State University (Publisher)
Created2020