Matching Items (6)
Filtering by

Clear all filters

155943-Thumbnail Image.png
Description
Affect is a domain of psychology that includes attitudes, emotions, interests, and values. My own affect influenced the choice of topics for my dissertation. After examining asteroid interiors and the Moon’s thermal evolution, I discuss the role of affect in online science education. I begin with asteroids, which are collections

Affect is a domain of psychology that includes attitudes, emotions, interests, and values. My own affect influenced the choice of topics for my dissertation. After examining asteroid interiors and the Moon’s thermal evolution, I discuss the role of affect in online science education. I begin with asteroids, which are collections of smaller objects held together by gravity and possibly cohesion. These “rubble-pile” objects may experience the Brazil Nut Effect (BNE). When a collection of particles of similar densities, but of different sizes, is shaken, smaller particles will move parallel to the local gravity vector while larger objects will do the opposite. Thus, when asteroids are shaken by impacts, they may experience the BNE as possibly evidenced by large boulders seen on their surfaces. I found while the BNE is plausible on asteroids, it is confined to only the outer layers. The Moon, which formed with a Lunar Magma Ocean (LMO), is the next topic of this work. The LMO is due to the Moon forming rapidly after a giant impact between the proto-Earth and another planetary body. The first 80% of the LMO solidified rapidly at which point a floatation crust formed and slowed solidification of the remaining LMO. Impact bombardment during this cooling process, while an important component, has not been studied in detail. Impacts considered here are from debris generated during the formation of the Moon. I developed a thermal model that incorporates impacts and find that impacts may have either expedited or delayed LMO solidification. Finally, I return to affect to consider the differences in attitudes towards science between students enrolled in fully-online degree programs and those enrolled in traditional, in-person degree programs. I analyzed pre- and post-course survey data from the online astrobiology course Habitable Worlds. Unlike their traditional program counterparts, students enrolled in online programs started the course with better attitudes towards science and also further changed towards more positive attitudes during the course. Along with important conclusions in three research fields, this work aims to demonstrate the importance of affect in both scientific research and science education.
ContributorsDingatantrige Perera, Jude Viranga (Author) / Asphaug, Erik (Thesis advisor) / Semken, Steven (Thesis advisor) / Anbar, Ariel (Committee member) / Elkins-Tanton, Linda T. (Committee member) / Robinson, Mark (Committee member) / Arizona State University (Publisher)
Created2017
156119-Thumbnail Image.png
Description
Impact cratering and volcanism are two fundamental processes that alter the surfaces of the terrestrial planets. Though well studied through laboratory experiments and terrestrial analogs, many questions remain regarding how these processes operate across the Solar System. Little is known about the formation of large impact basins (>300 km in

Impact cratering and volcanism are two fundamental processes that alter the surfaces of the terrestrial planets. Though well studied through laboratory experiments and terrestrial analogs, many questions remain regarding how these processes operate across the Solar System. Little is known about the formation of large impact basins (>300 km in diameter) and the degree to which they modify planetary surfaces. On the Moon, large impact basins dominate the terrain and are relatively well preserved. Because the lunar geologic timescale is largely derived from basin stratigraphic relations, it is crucial that we are able to identify and characterize materials emplaced as a result of the formation of the basins, such as light plains. Using high-resolution images under consistent illumination conditions and topography from the Lunar Reconnaissance Orbiter Camera (LROC), a new global map of light plains is presented at an unprecedented scale, revealing critical details of lunar stratigraphy and providing insight into the erosive power of large impacts. This work demonstrates that large basins significantly alter the lunar surface out to at least 4 radii from the rim, two times farther than previously thought. Further, the effect of pre-existing topography on the degradation of impact craters is unclear, despite their use in the age dating of surfaces. Crater measurements made over large regions of consistent coverage using LROC images and slopes derived from LROC topography show that pre-existing topography affects crater abundances and absolute model ages for craters up to at least 4 km in diameter.

On Mars, small volcanic edifices can provide valuable insight into the evolution of the crust and interior, but a lack of superposed craters and heavy mantling by dust make them difficult to age date. On Earth, morphometry can be used to determine the ages of cinder cone volcanoes in the absence of dated samples. Comparisons of high-resolution topography from the Context Imager (CTX) and a two-dimensional nonlinear diffusion model show that the forms observed on Mars could have been created through Earth-like processes, and with future work, it may be possible to derive an age estimate for these features in the absence of superposed craters or samples.
ContributorsMeyer, Heather (Author) / Robinson, Mark S (Thesis advisor) / Bell, Jim (Thesis advisor) / Denevi, Brett (Committee member) / Clarke, Amanda (Committee member) / Asphaug, Erik (Committee member) / Arizona State University (Publisher)
Created2018
136181-Thumbnail Image.png
Description
A robotic exploration mission that would enter a lunar pit to characterize the environment is described. A hopping mechanism for the robot's mobility is proposed. Various methods of hopping drawn from research literature are discussed in detail. The feasibilities of mechanical, electric, fluid, and combustive methods are analyzed. Computer simulations

A robotic exploration mission that would enter a lunar pit to characterize the environment is described. A hopping mechanism for the robot's mobility is proposed. Various methods of hopping drawn from research literature are discussed in detail. The feasibilities of mechanical, electric, fluid, and combustive methods are analyzed. Computer simulations show the mitigation of the risk of complex autonomous navigation systems. A mechanical hopping mechanism is designed to hop in Earth gravity and carry a payload half its mass. A physical experiment is completed and proves a need for further refinement of the prototype design. Future work is suggested to continue exploring hopping as a mobility method for the lunar robot.
ContributorsMcKinney, Tyler James (Author) / Thangavelautham, Jekan (Thesis director) / Robinson, Mark (Committee member) / Asphaug, Erik (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
Description
The traditional understanding of robotics includes mechanisms of rigid structures, which can manipulate surrounding objects, taking advantage of mechanical actuators such as motors and servomechanisms. Although these methods provide the underlying fundamental concepts behind much of modern technological infrastructure, in fields such as manufacturing, automation, and biomedical application, the robotic

The traditional understanding of robotics includes mechanisms of rigid structures, which can manipulate surrounding objects, taking advantage of mechanical actuators such as motors and servomechanisms. Although these methods provide the underlying fundamental concepts behind much of modern technological infrastructure, in fields such as manufacturing, automation, and biomedical application, the robotic structures formed by rigid axels on mechanical actuators lack the delicate differential sensors and actuators associated with known biological systems. The rigid structures of traditional robotics also inhibit the use of simple mechanisms in congested and/or fragile environments. By observing a variety of biological systems, it is shown that nature models its structures over millions of years of evolution into a combination of soft structures and rigid skeletal interior supports. Through technological bio-inspired designs, researchers hope to mimic some of the complex behaviors of biological mechanisms using pneumatic actuators coupled with highly compliant materials that exhibit relatively large reversible elastic strain. This paper begins the brief history of soft robotics, the various classifications of pneumatic fluid systems, the associated difficulties that arise with the unpredictable nature of fluid reactions, the methods of pneumatic actuators in use today, the current industrial applications of soft robotics, and focuses in large on the construction of a universally adaptable soft robotic gripper and material application tool. The central objective of this experiment is to compatibly pair traditional rigid robotics with the emerging technologies of sort robotic actuators. This will be done by combining a traditional rigid robotic arm with a soft robotic manipulator bladder for the purposes of object manipulation and excavation of extreme environments.
ContributorsShuster, Eden S. (Author) / Thanga, Jekan (Thesis director) / Asphaug, Erik (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
154629-Thumbnail Image.png
Description
In-situ exploration of planetary bodies such as Mars or the Moon have provided geologists and planetary scientists a detailed understanding of how these bodies formed and evolved. In-situ exploration has aided in the quest for water and life-supporting chemicals. In-situ exploration of Mars carried out by large SUV-sized rovers

In-situ exploration of planetary bodies such as Mars or the Moon have provided geologists and planetary scientists a detailed understanding of how these bodies formed and evolved. In-situ exploration has aided in the quest for water and life-supporting chemicals. In-situ exploration of Mars carried out by large SUV-sized rovers that travel long distance, carry sophisticated onboard laboratories to perform soil analysis and sample collection. But their large size and mobility method prevents them from accessing or exploring extreme environments, particularly caves, canyons, cliffs and craters.

This work presents sub- 2 kg ball robots that can roll and hop in low gravity environments. These robots are low-cost enabling for one or more to be deployed in the field. These small robots can be deployed from a larger rover or lander and complement their capabilities by performing scouting and identifying potential targets of interest. Their small size and ball shape allow them to tumble freely, preventing them from getting stuck. Hopping enables the robot to overcome obstacles larger than the size of the robot.

The proposed ball-robot design consists of a spherical core with two hemispherical shells with grouser which act as wheels for small movements. These robots have two cameras for stereovision which can be used for localization. Inertial Measurement Unit (IMU) and wheel encoder are used for dead reckoning. Communication is performed using Zigbee radio. This enables communication between a robot and a lander/rover or for inter-robot communication. The robots have been designed to have a payload with a 300 gram capacity. These may include chemical analysis sensors, spectrometers and other small sensors.

The performance of the robot has been evaluated in a laboratory environment using Low-gravity Offset and Motion Assistance Simulation System (LOMASS). An evaluation was done to understand the effect of grouser height and grouser separation angle on the performance of the robot in different terrains. The experiments show with higher grouser height and optimal separation angle the power requirement increases but an increase in average robot speed and traction is also observed. The robot was observed to perform hops of approximately 20 cm in simulated lunar condition. Based on theoretical calculations, the robot would be able to perform 208 hops with single charge and will operate for 35 minutes. The study will be extended to operate multiple robots in a network to perform exploration. Their small size and cost makes it possible to deploy dozens in a region of interest. Multiple ball robots can cooperatively perform unique in-situ science measurements and analyze a larger surface area than a single robot alone on a planet surface.
ContributorsRaura, Laksh Deepak (Author) / Thangavelautham, Jekanthan (Thesis advisor) / Berman, Spring (Thesis advisor) / Lee, Hyunglae (Committee member) / Asphaug, Erik (Committee member) / Arizona State University (Publisher)
Created2016
157675-Thumbnail Image.png
Description
Water has shaped the surface of Mars, recording previous environments and inspiring the search for extinct life beyond Earth. While conditions on the Martian surface today are not conducive to the presence of liquid water, ancient erosional and depositional features indicate that this was not always so. Quantifying the regional

Water has shaped the surface of Mars, recording previous environments and inspiring the search for extinct life beyond Earth. While conditions on the Martian surface today are not conducive to the presence of liquid water, ancient erosional and depositional features indicate that this was not always so. Quantifying the regional and global history of water on Mars is crucial to understanding how the planet evolved, where to focus future exploration, and implications for water on Earth.

Many sites on Mars contain layered sedimentary deposits, sinuous valleys with delta shaped deposits, and other indications of large lakes. The Hypanis deposit is a unique endmember in this set of locations as it appears to be the largest ancient river delta identified on the planet, and it appears to have no topographic boundary, implying deposition into a sea. I have used a variety of high-resolution remote sensing techniques and geologic mapping techniques to present a new model of past water activity in the region.

I gathered new orbital observations and computed thermal inertia, albedo, elevation, and spectral properties of the Hypanis deposit. I measured the strike and dip of deposit layers to interpret the sedimentary history. My results indicate that Hypanis was formed in a large calm lacustrine setting. My geomorphic mapping of the deposit and catchment indicates buried volatile-rich sediments erupted through the Chryse basin fill, and may be geological young or ongoing. Collectively, my results complement previous studies that propose a global paleoshoreline, and support interpretations that Mars had an ocean early in its history. Future missions to the Martian surface should consider Hypanis as a high-value sampling opportunity.
ContributorsAdler, Jacob (Author) / Bell, James (Thesis advisor) / Christensen, Philip R. (Philip Russel) (Committee member) / Robinson, Mark (Committee member) / Asphaug, Erik (Committee member) / Whipple, Kelin (Committee member) / Arizona State University (Publisher)
Created2019