Matching Items (1,337)
Filtering by

Clear all filters

ContributorsBebop Ensemble (Performer) / ASU Library. Music Library (Publisher)
Created1992-09-30
ContributorsJazz Combo (Performer) / ASU Library. Music Library (Publisher)
Created2003-11-12
ContributorsMarohnic, Charles (Director) / Adam, Greg (Performer) / Koller, Jacob (Performer) / Jones, Andy (Performer) / O'Reilly, John (Performer) / Gross, Andrew (Performer) / Combo #7 (Performer) / ASU Library. Music Library (Publisher)
Created1998-02-11
190725-Thumbnail Image.png
Description
Tire blowout often occurs during driving, which can suddenly disturb vehicle motions and seriously threaten road safety. Currently, there is still a lack of effective methods to mitigate tire blowout risks in everyday traffic, even for automated vehicles. To fundamentally study and systematically resolve the tire blowout issue for automated

Tire blowout often occurs during driving, which can suddenly disturb vehicle motions and seriously threaten road safety. Currently, there is still a lack of effective methods to mitigate tire blowout risks in everyday traffic, even for automated vehicles. To fundamentally study and systematically resolve the tire blowout issue for automated vehicles, a collaborative project between General Motors (GM) and Arizona State University (ASU) has been conducted since 2018. In this dissertation, three main contributions of this project will be presented. First, to explore vehicle dynamics with tire blowout impacts and establish an effective simulation platform for close-loop control performance evaluation, high-fidelity tire blowout models are thoroughly developed by explicitly considering important vehicle parameters and variables. Second, since human cooperation is required to control Level 2/3 partially automated vehicles (PAVs), novel shared steering control schemes are specifically proposed for tire blowout to ensure safe vehicle stabilization via cooperative driving. Third, for Level 4/5 highly automated vehicles (HAVs) without human control, the development of control-oriented vehicle models, controllability study, and automatic control designs are performed based on impulsive differential systems (IDS) theories. Co-simulations Matlab/Simulink® and CarSim® are conducted to validate performances of all models and control designs proposed in this dissertation. Moreover, a scaled test vehicle at ASU and a full-size test vehicle at GM are well instrumented for data collection and control implementation. Various tire blowout experiments for different scenarios are conducted for more rigorous validations. Consequently, the proposed high-fidelity tire blowout models can correctly and more accurately describe vehicle motions upon tire blowout. The developed shared steering control schemes for PAVs and automatic control designs for HAVs can effectively stabilize a vehicle to maintain path following performance in the driving lane after tire blowout. In addition to new research findings and developments in this dissertation, a pending patent for tire blowout detection is also generated in the tire blowout project. The obtained research results have attracted interest from automotive manufacturers and could have a significant impact on driving safety enhancement for automated vehicles upon tire blowout.
ContributorsLi, Ao (Author) / Chen, Yan (Thesis advisor) / Berman, Spring (Committee member) / Kannan, Arunachala Mada (Committee member) / Liu, Yongming (Committee member) / Lin, Wen-Chiao (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2023
161265-Thumbnail Image.png
Description
Colloidal nanocrystals (NCs) are promising candidates for a wide range of applications (electronics, optoelectronics, photovoltaics, thermoelectrics, etc.). Mechanical and thermal transport property play very important roles in all of these applications. On one hand, mechanical robustness and high thermal conductivity are desired in electronics, optoelectronics, and photovoltaics. This improves thermomechanical

Colloidal nanocrystals (NCs) are promising candidates for a wide range of applications (electronics, optoelectronics, photovoltaics, thermoelectrics, etc.). Mechanical and thermal transport property play very important roles in all of these applications. On one hand, mechanical robustness and high thermal conductivity are desired in electronics, optoelectronics, and photovoltaics. This improves thermomechanical stability and minimizes the temperature rise during the device operation. On the other hand, low thermal conductivity is desired for higher thermoelectric figure of merit (ZT). This dissertation demonstrates that ligand structure and nanocrystal ordering are the primary determining factors for thermal transport and mechanical properties in colloidal nanocrystal assemblies. To eliminate the mechanics and thermal transport barrier, I first propose a ligand crosslinking method to improve the thermal transport across the ligand-ligand interface and thus increasing the overall thermal conductivity of NC assemblies. Young’s modulus of nanocrystal solids also increases simultaneously upon ligand crosslinking. My thermal transport measurements show that the thermal conductivity of the iron oxide NC solids increases by a factor of 2-3 upon ligand crosslinking. Further, I demonstrate that, though with same composition, long-range ordered nanocrystal superlattices possess higher mechanical and thermal transport properties than disordered nanocrystal thin films. Experimental measurements along with theoretical modeling indicate that stronger ligand-ligand interaction in NC superlattice accounts for the improved mechanics and thermal transport. This suggests that NC/ligand arranging order also plays important roles in determining mechanics and thermal transport properties of NC assemblies. Lastly, I show that inorganic ligand functionalization could lead to tremendous mechanical enhancement (a factor of ~60) in NC solids. After ligand exchange and drying, the short inorganic Sn2S64- ligands dissociate into a few atomic layers of amorphous SnS2 at room temperature and interconnects the neighboring NCs. I observe a reverse Hall-Petch relation as the size of NC decreases. Both atomistic simulations and analytical phase mixture modeling identify the grain boundaries and their activities as the mechanic bottleneck.
ContributorsWang, Zhongyong (Author) / Wang, Robert RW (Thesis advisor) / Wang, Liping LW (Committee member) / Newman, Nathan NN (Committee member) / Arizona State University (Publisher)
Created2021
172014-Thumbnail Image.png
Description
A well-insulated dark conventional rooftop can be hotter than any other urban surface, including pavements. Since rooftops cover around 20 – 25% of most urban areas, their role in the urban heat island effect is significant. In general, buildings exchange heat with the surroundings in three ways: heat release from

A well-insulated dark conventional rooftop can be hotter than any other urban surface, including pavements. Since rooftops cover around 20 – 25% of most urban areas, their role in the urban heat island effect is significant. In general, buildings exchange heat with the surroundings in three ways: heat release from the cooling/heating system, air exchange associated with exfiltration and relief air, and heat transfer between the building envelope and surroundings. Several recent studies show that the building envelope generates more heat release into the environment than any other building component.Current advancements in material science have enabled the development of materials and coatings with very high solar reflectance and thermal emissivity, and that can alter their radiative properties based on surface temperature. This dissertation is an effort to quantify the impact of recent developments in such technologies on urban air. The current study addresses three specific unresolved topics: 1) the relative importance of rooftop solar reflectance and thermal emissivity, 2) the role of rooftop radiative properties in different climates, and 3) the impact of temperature-adaptive exterior materials/coatings on building energy savings and urban cooling. The findings from this study show that the use of rooftop materials with solar reflectance above 0.9 maintain the surface temperature below ambient air temperature most of the time, even when the materials have conventional thermal emissivity (0.9). This research has demonstrated that for hot cities, rooftops with high solar reflectance and thermal emittance maximize building energy savings and always cool the surrounding air. For moderate climate regions, high solar reflectance and low thermal emittance result in the greatest building energy cost savings. This combination of radiative properties cools the air during the daytime and warms it at night. Finally, this research found that temperature-adaptive materials could play a significant role in reducing utility costs for poorly insulated buildings, but that they heat the surrounding air in the winter, irrespective of the rooftop insulation. Through the detailed analysis of building façade radiative properties, this dissertation offers climate-specific design guidance that can be used to simultaneously optimize energy costs while minimizing adverse warming of the surrounding environment.
ContributorsPrem Anand Jayaprabha, Jyothis Anand (Author) / Sailor, David (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Huang, Huei-Ping (Committee member) / Wang, Liping (Committee member) / Yeom, Dongwoo Jason (Committee member) / Arizona State University (Publisher)
Created2022
ContributorsMarohnic, Chuck (Director) / Concert Jazz Band (Performer) / ASU Library. Music Library (Publisher)
Created1984-10-08
ContributorsMoio, Dom (Performer) / Latin Jazz Ensemble (Performer) / ASU Library. Music Library (Publisher)
Created1994-11-14
ContributorsJazz Combo (Performer) / ASU Library. Music Library (Publisher)
Created1990-10-31
ContributorsPilafian, Sam (Director) / Concert Jazz Band (Performer) / ASU Library. Music Library (Publisher)
Created1999-04-26